NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Automatic resection of the aortic device fibroelastoma utilizing a right side to side method.
Pigs are important experimental animals for cardiovascular research. Few porcine coronary atherosclerosis models have been developed; however, their induction requires more than six months. We developed a porcine coronary artery atherosclerosis model using nicotine injection with a balloon overdilation. A coronary balloon was placed in the porcine coronary artery and overdilated to induce a mechanical injury. Nicotine was administrated via intramuscular injection every day, and changes in the coronary artery were observed after four weeks. Coronary angiography revealed nicotine injection with a balloon overdilation group showed narrowing of the coronary artery at the injury site. The combination of balloon and nicotine significantly increased the intimal hyperplasia in optical coherence tomography analysis. Proliferated tunica media were noted in the nicotine injection with balloon overdilation groups and lack of collagen was observed in the tunica media at eight weeks. Quantitative analysis showed increased smooth muscle actin alpha (SMA), cluster of differentiation 68 (CD68), and Krüppel-like factor 4 (KLF4) in the nicotine injection with balloon overdilation groups. Immunohistochemistry results showed CD68-positive cells displayed SMA- and KLF4-positive reactivity in the border zone of the intimal hyperplasia. Our results show that nicotine injection with balloon overdilation can induce atherosclerotic lesions within one month, which can serve as an alternative pig animal model for the development of coronary stents.Angiogenesis is essential for the sustained growth of solid tumors. Hypoxia-inducible factor 1 (HIF-1) is a master regulator of angiogenesis and constitutive activation of HIF-1 is frequently observed in human cancers. Therefore, understanding the mechanisms governing the activation of HIF-1 is critical for successful therapeutic targeting of tumor angiogenesis. Herein, we establish a new regulatory mechanism responsible for the constitutive activation of HIF-1α in cancer, irrespective of oxygen tension. PIM1 kinase directly phosphorylates HIF-1α at threonine 455, a previously uncharacterized site within its oxygen-dependent degradation domain. This phosphorylation event disrupts the ability of prolyl hydroxylases to bind and hydroxylate HIF-1α, interrupting its canonical degradation pathway and promoting constitutive transcription of HIF-1 target genes. Moreover, phosphorylation of the analogous site in HIF-2α (S435) stabilizes the protein through the same mechanism, indicating post-translational modification within the oxygen-dependent degradation domain as a mechanism of regulating the HIF-α subunits. In vitro and in vivo models demonstrate that expression of PIM1 is sufficient to stabilize HIF-1α and HIF-2α in normoxia and stimulate angiogenesis in a HIF-1-dependent manner. CRISPR mutants of HIF-1α (Thr455D) promoted increased tumor growth, proliferation, and angiogenesis. Moreover, HIF-1α-T455D xenograft tumors were refractory to the anti-angiogenic and cytotoxic effects of PIM inhibitors. These data identify a new signaling axis responsible for hypoxia-independent activation of HIF-1 and expand our understanding of the tumorigenic role of PIM1 in solid tumors.Peritoneal metastasis is a common issue in the progression of high-grade serous ovarian cancers (HGSOCs), yet the underlying mechanism remains unconfirmed. We demonstrated that ZEB2, the transcription factor of epithelial-mesenchymal transition (EMT), was upregulated in ascites cells from HGSOC patients and in CD133+ cancer stem-like cells (CSLCs) from epithelial ovarian cancer (EOC) cell lines. SiRNA-mediated knockdown of ZEB2 in EOC cells decreased the percentage of CSLCs and reduced the colony forming potential, cell invasion capacity and expression of pluripotent genes Oct4 and Nanog. Inhibition of ZEB2 also induced cellular apoptosis and impacted the tumorigenicity of ovarian CSLCs. The mesenchymal markers N-cadherin and vimentin were downregulated, while the epithelial marker E-cadherin was upregulated after ZEB2 knockdown. MiR-200a, a molecule that downregulates ZEB2, had the opposite effect of ZEB2 expression in EOC-CSLCs. A retrospective study of 98 HGSOC patients on the relationship of ascites volume, pelvic and abdominal metastasis, International Federation of Gynecology and Obstetrics (FIGO) stage and the malignant involvement of abdominal organs and lymph nodes was performed. Patients with high expression of ZEB2 in tumour tissues had a higher metastasis rate and a poorer prognosis than those with low expression. The parameters of ZEB2 expression and ascites volume were strongly linked with the prognostic outcome of HGSOC patients and had higher hazard ratios. These findings illustrated that ZEB2 facilitates the invasive metastasis of EOC-CSLCs and can predict peritoneal metastasis and a poor prognosis in HGSOC patients.Cancer cells show increases in protein degradation pathways, including autophagy, during progression to meet the increased protein degradation demand and support cell survival. On the other hand, reduced autophagy activity during aging is associated with a reduced DNA damage response and increased genomic instability. Therefore, it is a puzzling how DNA repair can be increased in cancer cells that are resistant to chemotherapies or during progression when autophagy activity is intact or increased. We discovered that tripartite motif containing 44 (TRIM44) is a pivotal element regulating the DNA damage response in cancer cells with intact autophagy. TRIM44 deubiquitinates p62, an autophagy substrate, which leads to its oligomerization. This prevents p62 localization to the nucleus upon irradiation. Increased cytoplasmic retention of p62 by TRIM44 prevents the degradation of FLNA and 53BP1, which increases DNA damage repair. Together, our data support TRIM44 a potential therapeutic target for therapy-resistant tumor cells with intact autophagy.The South China Sea (SCS) is a high biodiversity region in the world ocean, supports abundant marine resources to the peripheral nations, and affects weather/climate in southeast Asia. A better understanding of its circulation is important to better prediction and management of the SCS. Here we reveal sizable intraseasonal oscillations at period ~ 50 days between May and November 2017 in the acoustic Doppler current profiler observed velocity in the central SCS. Satellite observed wind and sea level data together with a process-oriented numerical experiment suggest that the oscillations were caused by locally-generated and remotely-penetrated westward-propagating Rossby waves. The summer southwesterly monsoon strengthening/weakening and the resultant Ekman pumping velocity and shoreward Ekman transport increase/decrease and consequent coastal sea level rise/fall off the west coast of Palawan create westward-propagating Rossby waves causing velocity oscillations in the central SCS. Besides the local generation, Rossby waves with sea level anomaly > 0.2 m propagating from the Pacific through the Sulu Sea into the SCS could contribute to the intraseasonal velocity oscillations in the central SCS.Runt-related transcription factor 2 (Runx2)-deficient mice can be used to model congenital tooth agenesis in humans. Conversely, uterine sensitization-associated gene-1 (Usag-1)-deficient mice exhibit supernumerary tooth formation. Arrested tooth formation can be restored by crossing both knockout-mouse strains; however, it remains unclear whether topical inhibition of Usag-1 expression can enable the recovery of tooth formation in Runx2-deficient mice. Here, we tested whether inhibiting the topical expression of Usag-1 can reverse arrested tooth formation after Runx2 abrogation. The results showed that local application of Usag-1 Stealth small interfering RNA (siRNA) promoted tooth development following Runx2 siRNA-induced agenesis. Additionally, renal capsule transplantation of siRNA-loaded cationized, gelatin-treated mouse mandibles confirmed that cationized gelatin can serve as an effective drug-delivery system. We then performed renal capsule transplantation of wild-type and Runx2-knockout (KO) mouse mandibles, treated with Usag-1 siRNA, revealing that hindered tooth formation was rescued by Usag-1 knockdown. Furthermore, topically applied Usag-1 siRNA partially rescued arrested tooth development in Runx2-KO mice, demonstrating its potential for regenerating teeth in Runx2-deficient mice. Our findings have implications for developing topical treatments for congenital tooth agenesis.It is widely known that during the reproductive stage (flowering), plants do not root well. Most protocols of shoot regeneration in plants utilize juvenile tissue. Adding these two realities together encouraged us to study the role of florigen in shoot regeneration. Mature tobacco tissue that expresses the endogenous tobacco florigen mRNA regenerates poorly, while juvenile tissue that does not express the florigen regenerates shoots well. Inhibition of Nitric Oxide (NO) synthesis reduced shoot regeneration as well as promoted flowering and increased tobacco florigen level. In contrast, the addition of NO (by way of NO donor) to the tissue increased regeneration, delayed flowering, reduced tobacco florigen mRNA. Ectopic expression of florigen genes in tobacco or tomato decreased regeneration capacity significantly. Overexpression pear PcFT2 gene increased regeneration capacity. During regeneration, florigen mRNA was not changed. We conclude that florigen presence in mature tobacco leaves reduces roots and shoots regeneration and is the possible reason for the age-related decrease in regeneration capacity.Phosphoprotein phosphatase (PPP) enzymes are ubiquitous proteins involved in cellular signaling pathways and other functions. Here we have traced the origin of the PPP sequences of Eukaryotes and their radiation. Using a bacterial PPP Hidden Markov Model (HMM) we uncovered "BacterialPPP-Like" sequences in Archaea. A HMM derived from eukaryotic PPP enzymes revealed additional, unique sequences in Archaea and Bacteria that were more like the eukaryotic PPP enzymes then the bacterial PPPs. These sequences formed the basis of phylogenetic tree inference and sequence structural analysis allowing the history of these sequence types to be elucidated. Our phylogenetic tree data strongly suggest that eukaryotic PPPs ultimately arose from ancestors in the Asgard archaea. We have clarified the radiation of PPPs within Eukaryotes, substantially expanding the range of known organisms with PPP subtypes (Bsu1, PP7, PPEF/RdgC) previously thought to have a more restricted distribution. Surprisingly, sequences from the Methanosarcinaceae (Euryarchaeota) form a strongly supported sister group to eukaryotic PPPs in our phylogenetic analysis. MEK inhibitor drugs This strongly suggests an intimate association between an Asgard ancestor and that of the Methanosarcinaceae. This is highly reminiscent of the syntrophic association recently demonstrated between the cultured Lokiarchaeal species Prometheoarchaeum and a methanogenic bacterial species.This paper proposes a fully automatic method to segment the inner boundary of the bony orbit in two different image modalities magnetic resonance imaging (MRI) and computed tomography (CT). The method, based on a deep learning architecture, uses two fully convolutional neural networks in series followed by a graph-search method to generate a boundary for the orbit. When compared to human performance for segmentation of both CT and MRI data, the proposed method achieves high Dice coefficients on both orbit and background, with scores of 0.813 and 0.975 in CT images and 0.930 and 0.995 in MRI images, showing a high degree of agreement with a manual segmentation by a human expert. Given the volumetric characteristics of these imaging modalities and the complexity and time-consuming nature of the segmentation of the orbital region in the human skull, it is often impractical to manually segment these images. Thus, the proposed method provides a valid clinical and research tool that performs similarly to the human observer.
Homepage: https://www.selleckchem.com/MEK.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.