NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Capturing one substances by simply nanopores: tested instances and also thermodynamics.
05). The pot experiment exhibited that application of CA has significantly reduced soil pH and organic matter content by 8.63% and 28.21%, respectively, however the two extracts have no significant effect on soil properties. The study indicated that application of CA has negative effects on root morphological parameters and chlorophyll fluorescence parameters of Sedum alfredii.The addition of extracts of two plants have not caused any harm to Sedum alfredii. The application of three activating agents was beneficial for purification of Cd and Zn in soils, and its repairing efficiency was improved by 3.92, 3.37, 3.33 times and 0.44, 0.20, 0.86 times, respectively. The combination of plant extracts and hyperaccumulators can effectively remove heavy metals from contaminated soils, which provided a theoretical basis for mitigation of pollution in soils.There is limited evidence about gait stability and its alteration by concurrent motor and cognitive tasks in children with cerebral palsy (CP). We examined gait stability and how it is altered by constrained cognitive or motor task in CP and their typically developed (TD) controls. Gait kinematics were recorded using inertial-measurement units (IMU) from 18 patients with hemiplegia (13.5 ± 2.4 years), 12 with diplegia (13.0 ± 2.1 years), and 31 TD controls (13.5 ± 2.2 years) during unconstrained gait, and motor (carrying a tray) and cognitive (word naming) task constrained gait at preferred speed (~400 steps/task). Step duration, its standard deviation and refined-compound-multiscale entropy (RCME) were computed independently for vertical and resultant horizontal accelerations. Gait complexity was higher for patients with CP than TD in all tasks and directions (p 0.586), but its variation was higher in CP than TD (p less then 0.001-0.05), and during the constrained than unconstrained gait in all groups (p less then 0.01-0.001). The gait in children with CP was more complex and the dual-task cost was higher primarily for children with diplegic CP than TD during cognitive task, indicating that attentional load hinders their gait more. This raises the hypothesis that more attention and cortical resources are needed to compensate for the impaired gait in children with CP.Bone Tissue Engineering has been focusing on improving the current methods for bone repair, being the use of scaffolds presented as an upgrade to traditional surgery techniques. Scaffolds are artificially porous matrices, meant to promote cell seeding and proliferation, being these properties influenced by the permeability of the structure. This work employed experimental pressure drop tests and Computational Fluid Dynamics models to assess permeability (and fluid streamlines) within different triply periodic minimal surfaces scaffold geometries (Schwarz D, Gyroid and Schwarz P). The pressure outputs from the computational analysis presented a good correlation with the experimental results, with R2 equal to 0.903; they have also shown that a lower porosity may not mean a lower permeability if the geometry is altered, such as the difference between 60% porous Gyroid scaffolds (8.1*10-9 mm2) and 70% porous Schwarz D scaffolds (7.1*10-9 mm2). Fluid streamlines revealed how the Gyroid geometries are the most appropriate design for most bone tissue engineering applications, due to their consistent fluid permeation, followed by Schwarz D. The Schwarz P geometries have shown flat streamlines and significant variation of the permeability with the porosity (an increase of 10% in their porosity lead to an increase in the permeability from 5.1*10-9 mm2 to 11.7*10-9 mm2), which would imply a poor environment for cell seeding and proliferation.Although body mass index (BMI) relates to body segment parameters (BSPs), unknowns persist over whether 1) BSPs relate to BMI group classifications, 2) sex influences BMI/BSP relationships, and 3) simple anthropometric measures sufficiently predict BSPs. Dual energy X-ray absorptiometry (DXA) scans and anthropometric measures were obtained from 76 participants (33M, 43F) of varying body composition. Trunk, neck and head (TNH), arm, forearm and hand masses were obtained from DXA scans and center of mass locations (COM) estimated from geometric models. Groups with larger BMIs had lesser hand and forearm mass (%total body mass; p less then 0.001) and greater TNH mass (p=0.014). Males had greater hand, forearm, and arm masses (p less then 0.05). TNH COM was inferior in groups with larger BMI (p less then 0.01) and in males (p=0.006). In females, arm COM was distal in Obese II/III versus Normal (p=0.024). Two sets of linear models were created to predict BSPs; a simplified set with only BMI, height, weight, sex and mass potential predictors and a complex set with additional anthropometric measures. Complex arm and TNH mass models (arm R2=0.43, TNH R2=0.61) explained more variance than simplified models (arm R2=0.1, TNH R2=0.33). Complex hand mass, forearm mass and TNH COM models had smaller R2 increases versus simplified models (hand=0.05, forearm=0.06, TNH=0.08). Explained variance in forearm COM (R2=0.2) and arm COM (R2=0.27) complex models was low, suggesting a constant may provide reasonable estimates. Certain BSPs can be estimated using simplified measures, whereas prediction of other BSPs markedly improves if additional anthropometric measures are included.Anterior cruciate ligament (ACL) is a primary structure and a commonly injured ligament of the knee joint. Some patients with ACL deficiency (ACLD) experience joint instability and require a reconstructive surgery to return to daily routines, some can adapt by limiting their activities while others, called copers, can return to high-level activities with no instability. We investigated the effects of alterations in the knee flexion angle (KFA) and muscle force activations on the stability and biomechanics of ACLD joints at 25, 50, and 75% periods of gait stance. ACLD joint stability is controlled by variations in both KFA and knee muscle forces. For the latter, a parameter called activity index is defined as the ratio of forces in ACL antagonists (quadriceps and gastrocnemii) to those in ACL agonists (hamstrings). Under a greater KFA (2-6° beyond the mean of reported values in healthy subjects), an ACLD joint regains its pre-injury stability levels. The ACLD joint stability also markedly improves at smaller quadriceps and larger hamstrings forces (activity indices of 2.0-3.6 at 25%) at the first half of stance and smaller gastrocnemii and larger hamstrings forces (activity indices of 0.1-1.1 at 50% and 0.1-1.2 at 75%) at the second half of stance. Activity index and KFA are both crucial when assessing the dynamic stability of an ACLD joint. These results are helpful in our understanding of the biomechanics and stability of ACLD joints towards improved prevention and treatment strategies.Osteomalacia is a pathological bone condition consisting in a deficient primary mineralization of the matrix, leading to an accumulation of osteoid tissue and reduced bone mechanical strength. The amounts, properties and organization of bone constituents at tissue level, are known to influence its mechanical properties. It is then important to investigate the relationship between mechanical behavior and tissue composition at this scale in order to provide a better understanding of bone fragility mechanisms associates with this pathology. Our purpose was to analyze the links between ultra-structural properties and the mechanical behavior of this pathological bone tissue (osteomalacia) at tissue level (mineral and osteoid separately, or global). Four bone biopsies were taken from patients with osteomalacia, and subsequently embedded, sectioned, and polished. Then nanoindentation tests were performed to determine local elastic modulus E, contact hardness Hc and true hardness H for both mineralized and organic bod physicochemical values for osteoid and mineral phases.The femoral soft tissue (i.e., skin, muscle, fat) may play a key role in preventing hip fractures during a fall by absorbing the impact energy. We measured the femoral soft tissue deformation and associated compressive force during simulated sideways falls to estimate the energy absorbed by the soft tissue, and then examined how this was affected by the hip impact configuration and gender. Eighteen young adults (9 males and 9 females) participated in the pelvis release experiment. The pelvis was raised through a rope attached to an electromagnet on the ceiling, so the skin surface barely touches the ultrasound probe, which flush to a Plexiglas plate placed on a force plate. The electromagnet was turned off to cause a fall while the soft tissue deformation and associated compressive force were being recorded. Trials were acquired with three hip impact configurations. An outcome variable included the energy absorbed by the femoral soft tissue during a fall. The energy absorbed by the femoral soft tissue ranged from 0.03 to 3.05 J. Furthermore, the energy absorption was associated with the hip impact configuration (F = 4.69, p = 0.016). On average, the absorbed energy was 62% greater in posteriolateral than anteriolateral impact (0.92 versus 0.57 J). However, the energy absorption did not differ between male and female (F = 0.91, p = 0.36). The force-deflection behavior of the femoral soft tissue during a fall has been recorded, providing insights on the potential protective benefits of the soft tissue covering during a fall.
Performing a sit-to-stand (STS) can be a challenging task for older adults because of age-related declines in neuromuscular strength and coordination. We investigated the effects of different initial foot positions (IFPs) on kinematics, muscle activation patterns, and balance control during a STS in younger and older adults.

Ten younger and ten older healthy adults participated in this study. Four symmetric IFPs were studied (1) reference (REF), (2) toes-out with heels together (TOHT), (3) toes-out (TO), and (4) Wide. Lower-extremity muscle activation patterns and kinetic and kinematic data in the sagittal and frontal planes were measured.

The trunk forward-tilt angle and hip extension torque during uprising were smaller in TO and Wide for both age groups. Postural sway and center of pressure sway area were smallest in TO after completion of uprising with no difference between age groups. Adductor longus and gluteus medius activity was greater in TO than in the other IFPs, and older adults activated these muscles to a greater degree than younger adults.

Smaller trunk flexion angles with greater activation of the hip abductor and adductor muscles in TO contributed to improving postural stability during the STS.

STS training with a toes-out foot position could be an effective rehabilitation strategy for older adults to strengthen hip muscles that control medio-lateral balance required for balance during a STS.
STS training with a toes-out foot position could be an effective rehabilitation strategy for older adults to strengthen hip muscles that control medio-lateral balance required for balance during a STS.Damage accumulation in the bone under continuous daily loading causes local mechanical overloading known to induce osteocyte apoptosis, which promotes bone resorption to repair bone damage. However, only a few studies have investigated the mechanism of apoptosis in mechanically overloaded osteocytes. As mechanically stimulated osteocytes produce nitric oxide (NO), which triggers apoptosis in various cell types, we aimed to elucidate the mechanism underlying apoptosis in mechanically overloaded osteocytes, focusing on intracellular NO. To investigate the effects of force magnitude on apoptosis and intracellular NO production, we isolated osteocytes from DMP1-EGFP mice and subjected them to quantitative local forces via fibronectin-coated micro beads targeting integrin on the cell surface using a magnetic tweezer. Cell shrinkage was microscopically examined, and intracellular NO production was visualized using DAR-4 M. Mechanical stimulation revealed relationships between force magnitude, apoptosis, and intracellular NO production.
Homepage:
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.