Notes
Notes - notes.io |
924 °C) was larger than that of HepG2 (0.250 °C). However, the temperature of adherent HepG2 cells changed over time, showing susceptibility to the environment most of the time compared to H1975. Moreover, the temperature increment of non-cancerous cells, such as hepatic stellate cells, was monitored in response to the stimulus of paraformaldehyde, showing the process of cell death. Therefore, this thermometric microchip integrated with cell culture could be a non-disposable and label-free tool for monitoring cellular temperature applied to the study of physiology and pathology.An important issue in the prognosis of tuberculosis (TB) is a short period between correct diagnosis and start the suitable antibiotic therapy. So, a rapid and valid method for detection of Mycobacterium tuberculosis (M. tb) complex is considered as a necessity. Herein, a rapid, low-cost, and PCR-free DNA biosensor was developed based on multi-walled carbon nanotubes (MWCNTs), polypyrrole (PPy), and hydroxyapatite nanoparticles (HAPNPs) for highly sensitive and specific recognition of M.tb. The biosensor consisted of M.tb ssDNA probe covalently attached to the HANPs/PPy/MWCNTs/GCE surface that hybridized to a complementary target sequence to form a duplex DNA. The M.tb target recognition was based on the oxidation signal of the electroactive Methylene Blue (MB) on the surface of the modified GCE using differential pulse voltammetry (DPV) method. It is worth to mention that for the first time Plackett-Burman (PB) screening design and response surface method (RSM) based on central composite design (CCD) was applied as a powerful and an efficient approach to find optimal conditions for maximum M.tb biosensor performance leading to simplicity and rapidity of operation. The proposed DNA biosensor exhibits a wide detection range from 0.25 to 200.0 nM with a low detection limit of 0.141 nM. The performance of designed biosensor for clinical diagnosis and practical applications was revealed through hybridization between DNA probe-modified GCE and extracted DNA from sputum clinical samples.A novel monolithic column incorporated with Schiff base network-1 (SNW-1) was prepared for in-tube solid phase microextraction (SPME) of antiepileptic drugs. The SNW-1 nanoparticles was synthesized by a solvent thermal method and embedded in the poly(glycidyl methacrylate-ethylene glycol dimethacrylate) (GMA-EGDMA) monolithic column by in situ polymerization. The amount of SNW-1 in polymerization solution for preparation of monolithic column was optimized. Fourier transform infrared spectrometry and scanning electron microscope were used to characterize the obtained monolithic column. The SNW-1-monolithic column was connected to the high-performance liquid chromatography (HPLC) system and applied for online extraction and analysis of antiepileptic drugs. The extraction conditions including sample solution flow rate, desorption time, acetonitrile content, pH of sample solution and sample volume were investigated. Under optimal conditions, the proposed SPME-HPLC method showed high extraction efficiency, good linearity, low limits of detection (0.2 ng/mL) and good repeatability (relative standard deviations less then 2.41%). Imatinib research buy This method was also applied to the analysis of antiepileptic drugs in human plasma samples and the recoveries were in the range of 88.6-106.1% with RSDs less than 3.51%.Standard two/three dimensional (2D/3D)-cell culture platforms have facilitated the understanding of the communications between various cell types and their microenvironments. However, they are still limited in recapitulating the complex functionalities in vivo, such as tissue formation, tissue-tissue interface, and mechanical/biochemical microenvironments of tissues and organs. Intestine-on-a-chip platforms offer a new way to mimic intestinal behaviors and functionalities by constructing in vitro intestinal models in microfluidic devices. This review summarizes the advances and limitations of the state-of-the-art 2D/3D-cell culture platforms, animal models, intestine chips, and the combined multi-organ chips related with intestines. Their applications to studying intestinal functions, drug testing, and disease modeling are introduced. Different intestinal cell sources are compared in terms of gene expression abilities and the recapitulated intestinal morphologies. Among these cells, cells isolated form human intestinal tissues and derived from pluripotent stem cells appear to be more suitable for in vitro reconstruction of intestinal organs. Key challenges of current intestine-on-a-chip platforms and future directions are also discussed.Hydrated secondary mineralization readily forms on the surface of UO2 particles exposed to humidity in an oxidizing environment. The oxygen stable isotope composition of the secondary uranium oxide may reflect that of the water vapor, as well as the hydrogen and oxygen stable isotopic composition of the mineral hydration water. The geospatial organization of δ2H and δ18O values of atmospheric humidity and precipitation is increasingly well understood, which suggests that the hydrogen and oxygen stable isotopes in secondary mineral hydration water may yield information on the environment in which the mineralization formed. UO2 powders were exposed to air with constant 30%, 61%, and 91% relative humidity, and constant H and O stable isotope composition. Aliquots were sampled from the UO2 materials at intervals of 1-10 days through the total humidity exposure duration of 180 days. Scanning electron microscopy, transmission electron microscopy, and x-ray diffraction analysis of the humidity-exposed UO2 indicates n water.This paper presents a new analytical approach for element concentration determination in samples containing significant concentrations of dissolved and suspended interferences. The proposed system enables to segregate of the complex matrix, species of interest from other interferences with a minimum requirement of reagents and energy. For this purpose, a new cleanup chamber design was implemented with cationic and anionic resins employed under membrane form and the tangential flow of the solution avoided the drawbacks commonly attributed to the packed and fluidized bed columns, such as the formation of preferred paths, increasing hydrodynamic pressure and clogging. The element concentration determination was colorimetrically performed with an automatic flow analysis system. The strategy was validated with the concentration determination of calcium and phosphorus in raw sugarcane juice. Quantification limit of 0.48 to calcium and 1.13 mg L-1 to phosphorus, linear range between 1 and 50 mg L-1, with RSD of 0.50 and 1.50% (n = 11) respectively.Vessel-inside-vessel microwave-assisted acid digestion was developed for the analysis of samples with high-unsaturated fat content. For the first time, thermal decomposition of (NH4)2S2O8 solutions was evidenced for SO3 generation in situ and gas-phase modification in pressurized digestion flasks. NMR analysis demonstrated the oxidative effect of SO3 on olefin double bonds despite incomplete mineralization of oil samples. In this context, (NH4)2S2O8 decomposition was used in association with HNO3 solutions for sample digestion and mineral determination in edible oils (safflower, coconut, flaxseed, and chia). For all oils, dissolved organic carbon (DOC) contents lower than 5% m m-1 were obtained under optimum conditions 210 °C with an irradiation time of 40 min, 7.0 mol L-1 HNO3 and 2.0 mol L-1 (NH4)2S2O8 in 0.9 mol L-1 H2SO4. Thus, a DOC reduction of about 70% was reached compared to digestions using only HNO3 at the same conditions. Additionally, a time reduction of up to three-fold was achieved compared to typically demanding edible oil digestions. The proposed method allowed the determination of As, Cd, Cr, Mn, Ni, and Pb in edible vegetable oil samples by ICP-MS. Accuracy was evaluated against the reference method, and no significant difference was observed (p = 0.05), with wide linear ranges and good linearity (r ≥ 0.999) and LOD ranging from 0.48 (As) to 2.41 (Cd) μg L-1.The rapid and sensitive detection of Hg2+ is highly required to protect the environmental safety and human healthy. In the present work, a ratiometric fluorescent sensing platform, consisting of silicon quantum dots (SiQDs), Rox-labelled DNA (Rox-DNA), and Exonuclease III (Exo III), is developed for the accurate detection of Hg2+. As for fluorescent probe, we report the first use of glutathione as reduction reagent for the microwave synthesis of SiQDs, achieving the facile (using a house-hold microwave oven) and rapid (within 8 min) synthesis. Such SiQDs show pH-independent spectra and reversible fluorescent behavior with temperature. Moreover, experimental results revealed that the electrostatic interaction-induced aggregation of Rox-DNA and SiQDs facilitated the occurring of energy transfer (ET). And detection principle based on the regulation of ET between Rox and SiQDs with Exo III was designed for analysis. ET effect resulted in the fluorescent fading of Rox while that of SiQDs kept stable. For analysis, the addition of Hg2+ led to the formation of double-stranded Rox-DNA via T-Hg2+-T. Exo III would cut these double-stranded DNA to release Rox and Hg2+, thereby impeding the ET effect and recovering the fluorescent of Rox. Such SiQDs/Rox-DNA/Exo III ratiometric fluorescent sensing platform exhibited a linear response concentration range of 0.02 nM-10 nM with a detection limit of 0.01 nM. It was successfully used to analyze the water and soil samples. The reliability was validated by ICP-MS. Our work should promote the practical application of ratiometric fluorescent assay.Nucleic acid-based molecular diagnosis has gained special importance for the detection and early diagnosis of genetic diseases as well as for the control of infectious disease outbreaks. The development of systems that allow for the detection and analysis of nucleic acids in a low-cost and easy-to-use way is of great importance. In this context, we present a combination of a nanotechnology-based approach with the already validated dynamic chemical labeling (DCL) technology, capable of reading nucleic acids with single-base resolution. This system allows for the detection of biotinylated molecular products followed by simple detection using a standard flow cytometer, a widely used platform in clinical and molecular laboratories, and therefore, is easy to implement. This proof-of-concept assay has been developed to detect mutations in KRAS codon 12, as these mutations are highly important in cancer development and cancer treatments.Membrane fusion is fundamental to biological activity of cells, so disclosingits relevant mechanism is very important for understanding various cell functions. Although artificial model systems have been developed to uncover the mechanism of membrane fusion, key factors determining the mode of membrane fusion remain unclear. Based on the construction of different types of liposome vesicles, we used a dynamic fluorescence imaging method to investigate the effect of membrane protein distribution density on membrane fusion. Time-resolved imaging revealed that protein-free pure phospholipid vesicles themselves occurred full membrane fusion. Moreover, we prepared proteoliposomes with increasing protein-to-lipid ratio to better reflect the characteristic of membrane structure in vivo. Our data showed that pure phospholipid vesicles no longer fused with the proteoliposomes that in a higher protein proportion, indicating dense membrane proteins may hinder membrane fusion. A further comparative analysis of the interactions of pure phospholipid vesicles with the cell membrane / giant plasma membrane vesicles (GPMVs) / protein-free giant unilamellar vesicles (GUVs) confirmed the inhibitory effect of dense membrane proteins on membrane fusion.
Here's my website: https://www.selleckchem.com/products/Imatinib-Mesylate.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team