Notes
Notes - notes.io |
The formation of molecular assemblies in protein solutions is of strong interest both from a fundamental viewpoint and for biomedical applications. While ordered and desired protein assemblies are indispensable for some biological functions, undesired protein condensation can induce serious diseases. As a common cofactor, the presence of salt ions is essential for some biological processes involving proteins, and in aqueous suspensions of proteins can also give rise to complex phase diagrams including homogeneous solutions, large aggregates, and dissolution regimes. Here, we systematically study the cluster formation approaching the phase separation in aqueous solutions of the globular protein BSA as a function of temperature (T), the protein concentration (cp) and the concentrations of the trivalent salts YCl3 and LaCl3 (cs). As an important complement to structural, i.e. time-averaged, techniques we employ a dynamical technique that can detect clusters even when they are transient on the order of a few nanoseconds. By employing incoherent neutron spectroscopy, we unambiguously determine the short-time self-diffusion of the protein clusters depending on cp, cs and T. We determine the cluster size in terms of effective hydrodynamic radii as manifested by the cluster center-of-mass diffusion coefficients D. For both salts, we find a simple functional form D(cp, cs, T) in the parameter range explored. The calculated inter-particle attraction strength, determined from the microscopic and short-time diffusive properties of the samples, increases with salt concentration and temperature in the regime investigated and can be linked to the macroscopic behavior of the samples.[This corrects the article DOI 10.3389/fspor.2021.616999.].Due to the COVID-19 pandemic, European elite football (a.k.a. soccer) leagues played the remaining season 2019/20 without or strongly limited attendance of supporters (i.e., "ghost games"). From a sport psychological perspective this situation poses a unique opportunity to investigate the crowd's influence on referee decisions and the associated effect of "home advantage." A total of 1286 matches-played in the top leagues of Spain, England, Germany, Italy, Russia, Turkey, Austria and the Czech Republic-were analyzed for results, fouls, bookings and reasons for bookings and contrasted between respective matchdays of season 2018/19 (regular attendance) and season 2019/20 (ghost games). Following recent methodological developments in the research on the home advantage effect, four different statistical analyses-including Pollard's traditional method-were used for the assessment of the home advantage effect. There are two main findings. First, home teams were booked significantly more often with yellow cards for committing fouls in ghost games. Most importantly, this effect was independent of the course of the games. In contrast, bookings for other reasons (criticism and unfair sportsmanship) changed similarly for both home and away teams in ghost games. Second, the overall home performance and home advantage effect in the respective elite leagues-identified in the respective matches of the regular 2018/19 season-vanished in the ghost games of the 2019/20 season. selleck We conclude that the lack of supporters in top European football during the COVID-19 pandemic led to decreased social pressure from the ranks on referees, which also had a potential impact on the home advantage. Referees assessed the play of home teams more objectively, leading to increased yellow cards awarded for fouls committed by the home teams. Since there were no significant changes in referee decisions against the away teams, we argue that our observations reflect a reduction of unconscious favoritism of referees for the home teams.Background Walkway and treadmill induced trips have contrasting advantages, for instance walkway trips have high-ecological validity whereas belt accelerations on a treadmill have high-clinical feasibility for perturbation-based balance training (PBT). This study aimed to (i) compare adaptations to repeated overground trips with repeated treadmill belt accelerations in older adults and (ii) determine if adaptations to repeated treadmill belt accelerations can transfer to an actual trip on the walkway. Method Thirty-eight healthy community-dwelling older adults underwent one session each of walkway and treadmill PBT in a randomised crossover design on a single day. For both conditions, 11 trips were induced to either leg in pseudo-random locations interspersed with 20 normal walking trials. Dynamic balance (e.g., margin of stability) and gait (e.g., step length) parameters from 3D motion capture were used to examine adaptations in the walkway and treadmill PBT and transfer of adaptation from treadmill PBT to a walkway trip. Results No changes were observed in normal (no-trip) gait parameters in both training conditions, except for a small (0.9 cm) increase in minimum toe elevation during walkway walks (P less then 0.01). An increase in the margin of stability and recovery step length was observed during walkway PBT (P less then 0.05). During treadmill PBT, an increased MoS, step length and decreased trunk sway range were observed (P less then 0.05). These adaptations to treadmill PBT did not transfer to a walkway trip. Conclusions This study demonstrated that older adults could learn to improve dynamic stability by repeated exposure to walkway trips as well as treadmill belt accelerations. However, the adaptations to treadmill belt accelerations did not transfer to an actual trip. To enhance the utility of treadmill PBT for overground trip recovery performance, further development of treadmill PBT protocols is recommended to improve ecological authenticity.This study examined the effects of perturbation training on the contextual interference and generalization of encountering a novel opposing perturbation. One hundred and sixty-nine community-dwelling healthy older adults (69.6 ± 6.4 years) were randomly assigned to one of the three groups slip-perturbation training (St, n = 67) group received 24 slips, trip-perturbation training (Tt, n = 67) group received 24 trips, and control (Ctrl n = 31) group received only non-perturbed walking trials (ClinicalTrials.gov NCT03199729; https//clinicaltrials.gov/ct2/show/NCT03199729). After training, all groups had 30 min of rest and three post-training non-perturbed walking trials, followed by a reslip and a novel trip trial for St, a retrip and a novel slip trial for Tt, and randomized novel slip and trip trials for Ctrl. The margin of stability (MOS), step length, and toe clearance of post-training walking trials were compared among three groups to examine interferences in proactive adjustment. Falls, MOS at the instant of recovery foot touchdown, and hip height of post-training perturbation trials were investigated to detect interferences and generalization in reactive responses. Results indicated that prior adaptation to slip perturbation training, resulting in walking with a greater MOS (more anterior) and a shorter step length (p 0.05). Current findings suggested that, although perturbation training results in proactive adjustments that could worsen the reactive response (interference) when exposed to an unexpected opposing perturbation, older adults demonstrated the ability to immediately generalize the training-induced adaptive reactive control to maintain MOS, to preserve limb support control, and to reduce fall risk.Motor control for forward step initiation begins with anticipatory postural adjustments (APAs). During APAs, the central nervous system controls the center of pressure (CoP) to generate an appropriate center of mass (CoM) position and velocity for various task requirements. In this study, we investigated the effect of required stepping accuracy on the CoM and CoP parameters during APA for a step initiation task. Sixteen healthy young participants stepped forward onto the targets on the ground as soon as and as fast as possible in response to visual stimuli. Two target sizes (small 2 cm square and large 10 cm square) and two target distances (short 20% and long 40% of the body height) were tested. CoP displacement during the APA and the CoM position, velocity, and extrapolated CoM at the timing of the takeoff of the lead leg were compared among the conditions. In the small condition, comparing with the large condition, the CoM position was set closer to the stance limb side during the APA, which was confirmed by the location of the extrapolated center of mass at the instance of the takeoff of the lead leg [small 0.09 ± 0.01 m, large 0.06 ± 0.01 m, mean and standard deviation, F (1, 15) = 96.46, p less then 0.001, η2 = 0.87]. The variability in the mediolateral extrapolated center of mass location was smaller in the small target condition than large target condition when the target distance was long [small 0.010 ± 0.002 m, large 0.013 ± 0.004 m, t(15) = 3.8, p = 0.002, d = 0.96]. These findings showed that in the step initiation task, the CoM state and its variability were task-relevantly determined during the APA in accordance with the required stepping accuracy.A key challenge for the secondary prevention of Alzheimer's dementia is the need to identify individuals early on in the disease process through sensitive cognitive tests and biomarkers. The European Prevention of Alzheimer's Dementia (EPAD) consortium recruited participants into a longitudinal cohort study with the aim of building a readiness cohort for a proof-of-concept clinical trial and also to generate a rich longitudinal data-set for disease modelling. Data have been collected on a wide range of measurements including cognitive outcomes, neuroimaging, cerebrospinal fluid biomarkers, genetics and other clinical and environmental risk factors, and are available for 1,828 eligible participants at baseline, 1,567 at 6 months, 1,188 at one-year follow-up, 383 at 2 years, and 89 participants at three-year follow-up visit. We novelly apply state-of-the-art longitudinal modelling and risk stratification approaches to these data in order to characterise disease progression and biological heterogeneity within the cohort. Specifically, we use longitudinal class-specific mixed effects models to characterise the different clinical disease trajectories and a semi-supervised Bayesian clustering approach to explore whether participants can be stratified into homogeneous subgroups that have different patterns of cognitive functioning evolution, while also having subgroup-specific profiles in terms of baseline biomarkers and longitudinal rate of change in biomarkers.Knowledge Graphs (KGs) such as Freebase and YAGO have been widely adopted in a variety of NLP tasks. Representation learning of Knowledge Graphs (KGs) aims to map entities and relationships into a continuous low-dimensional vector space. Conventional KG embedding methods (such as TransE and ConvE) utilize only KG triplets and thus suffer from structure sparsity. Some recent works address this issue by incorporating auxiliary texts of entities, typically entity descriptions. However, these methods usually focus only on local consecutive word sequences, but seldom explicitly use global word co-occurrence information in a corpus. In this paper, we propose to model the whole auxiliary text corpus with a graph and present an end-to-end text-graph enhanced KG embedding model, named Teger. Specifically, we model the auxiliary texts with a heterogeneous entity-word graph (called text-graph), which entails both local and global semantic relationships among entities and words. We then apply graph convolutional networks to learn informative entity embeddings that aggregate high-order neighborhood information.
Read More: https://www.selleckchem.com/
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team