NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Conformational changes involving coils high light a possible holding site inside Rhodococcus equi VapB.
Learning with streaming data has received extensive attention during the past few years. Existing approaches assume that the feature space is fixed or changes by following explicit regularities, limiting their applicability in real-time applications. For example, in a smart healthcare platform, the feature space of the patient data varies when different medical service providers use nonidentical feature sets to describe the patients' symptoms. To fill the gap, we in this article propose a novel learning paradigm, namely, Generative Learning With Streaming Capricious (GLSC) data, which does not make any assumption on the feature space dynamics. In other words, GLSC handles the data streams with a varying feature space, where each arriving data instance can arbitrarily carry new features and/or stop carrying partial old features. Specifically, GLSC trains a learner on a universal feature space that establishes relationships between old and new features, so that the patterns learned in the old feature space can be used in the new feature space. The universal feature space is constructed by leveraging the relatednesses among features. We propose a generative graphical model to model the construction process, and show that learning from the universal feature space can effectively improve the performance with theoretical guarantees. The experimental results demonstrate that GLSC achieves conspicuous performance on both synthetic and real data sets.Multitask Gaussian processes (MTGPs) are a powerful approach for modeling dependencies between multiple related tasks or functions for joint regression. Current kernels for MTGPs cannot fully model nonlinear task correlations and other types of dependencies. In this article, we address this limitation. We focus on spectral mixture (SM) kernels and propose an enhancement of this type of kernels, called multitask generalized convolution SM (MT-GCSM) kernel. The MT-GCSM kernel can model nonlinear task correlations and dependence between components, including time and phase delay dependence. Each task in MT-GCSM has its GCSM kernel with its number of convolution structures, and dependencies between all components from different tasks are considered. Another constraint of current kernels for MTGPs is that components from different tasks are aligned. Here, we lift this constraint by using inner and outer full cross convolution between a base component and the reversed complex conjugate of another base component. Extensive experiments on two synthetic and three real-life data sets illustrate the difference between MT-GCSM and previous SM kernels as well as the practical effectiveness of MT-GCSM.On a touch surface, providing a local vibrotactile feedback enables multiuser and multitouch interactions. While the vibration propagation usually impedes this localization, we show in this paper that narrow strip-shaped plates constitute waveguides in which bending waves below a cut-off frequency do not propagate. We provide a theoretical explanation of the phenomenon and experimental validations. We thus show that vibrations up to a few kHz are well confined on top of the actuated area with vibration amplitude over 1 micrometer. The principle was validated with piezoelectric actuators of various shapes and a linear resonant actuator (LRA). Investigation of the effect of a fingertip load on the system through theory and experimentation was conducted and revealed that almost no attenuation was brought by the fingertip when using low frequency evanescent waves. Finally, a perceptual validation was conducted and showed dynamic stimuli with a large frequency spectrum could be felt and distinguished.Echocardiography (echo) is a critical tool in diagnosing various cardiovascular diseases. Despite its diagnostic and prognostic value, interpretation and analysis of echo images are still widely performed manually by echocardiographers. A plethora of algorithms has been proposed to analyze medical ultrasound data using signal processing and machine learning techniques. These algorithms provided opportunities for developing automated echo analysis and interpretation systems. The automated approach can significantly assist in decreasing the variability and burden associated with manual image measurements. In this paper, we review the state-of-the-art automatic methods for analyzing echocardiography data. Particularly, we comprehensively and systematically review existing methods of four major tasks echo quality assessment, view classification, boundary segmentation, and disease diagnosis. Our review covers three echo imaging modes, which are B-mode, M-mode, and Doppler. We also discuss the challenges and limitations of current methods and outline the most pressing directions for future research. In summary, this review presents the current status of automatic echo analysis and discusses the challenges that need to be addressed to obtain robust systems suitable for efficient use in clinical settings or point-of-care testing.The pandemic of coronavirus disease 2019 (COVID-19) is spreading all over the world. Medical imaging such as X-ray and computed tomography (CT) plays an essential role in the global fight against COVID-19, whereas the recently emerging artificial intelligence (AI) technologies further strengthen the power of the imaging tools and help medical specialists. We hereby review the rapid responses in the community of medical imaging (empowered by AI) toward COVID-19. For example, AI-empowered image acquisition can significantly help automate the scanning procedure and also reshape the workflow with minimal contact to patients, providing the best protection to the imaging technicians. Also, AI can improve work efficiency by accurate delineation of infections in X-ray and CT images, facilitating subsequent quantification. Moreover, the computer-aided platforms help radiologists make clinical decisions, i.e., for disease diagnosis, tracking, and prognosis. In this review paper, we thus cover the entire pipeline of medical imaging and analysis techniques involved with COVID-19, including image acquisition, segmentation, diagnosis, and follow-up. We particularly focus on the integration of AI with X-ray and CT, both of which are widely used in the frontline hospitals, in order to depict the latest progress of medical imaging and radiology fighting against COVID-19.This paper presents a SAR converter based mixed-signal multiplier for the feature extraction of neural signals using quadratic operators. After a thorough analysis of design principles and circuit-level aspects, the proposed architecture is explored for the implementation of two quadratic operators often used for the characterization of neural activity, the moving average energy operator and the nonlinear energy operator. Programmable chips for both operators have been implemented in a HV-180 nm CMOS process. Experimental results confirm their suitability for energy computation and action potential detection and the accomplished areapower performance is compared to prior art. The NEO prototype with no added delay consumes 178 nW and digitizes both the input neural signal and the operator outcome, with no need for digital multipliers.Over the years, numerous evidences have demonstrated that microbes living in the human body are closely related to human life activities and human diseases. However, traditional biological experiments are time-consuming and expensive, so it has become a research topic in bioinformatics to predict potential microbe-disease associations by adopting computational methods. In this study, a novel calculative method called BPNNHMDA is proposed to identify potential microbe-disease associations. In BPNNHMDA, a novel neural network model is first designed to infer potential microbe-disease associations, its input signal is a matrix of known microbe-disease associations, and its output signal is matrix of potential microbe-disease associations probabilities. And moreover, a new activation function is designed based on the hyperbolic tangent function, and its initial connection weights are optimized by adopting GIP similarity for microbes, which can improve the training speed of BPNNHMDA efficiently. Finally, in order to verify the performance of our prediction model, Leave-One-Out Cross Validation and k-Fold Cross Validation are implemented on BPNNHMDA respectively. Simulation results illustrate that BPNNHMDA can achieve reliable AUCs of 0.9242, 0.9127 ± 0.0009 and 0.8955 ± 0.0018 in LOOCV, 5-Fold CV and 2-Fold CV separately, which are superior to previous state-of-the-art methods. Furthermore, case studies demonstrate that BPNNHMDA has excellent prediction ability in practical applications as well.Molecular biomarkers are certain molecules or set of molecules that can be of help for diagnosis or prognosis of diseases or disorders. In the past decades, thanks to the advances in high-throughput technologies, a huge amount of molecular 'omics' data, e.g. transcriptomics and proteomics, have been accumulated. The availability of these omics data makes it possible to screen biomarkers for diseases or disorders. Accordingly, a number of computational approaches have been developed to identify biomarkers by exploring the omics data. In this review, we present a comprehensive survey on the recent progress of identification of molecular biomarkers with machine learning approaches. Specifically, we categorize the machine learning approaches into supervised, un-supervised and recommendation approaches, where the biomarkers including single genes, gene sets and small gene networks. In addition, we further discuss potential problems underlying bio-medical data that may pose challenges for machine learning, and provide possible directions for future biomarker identification.The global alignment of biological networks (GABN) aims to find an optimal alignment between proteins across species, such that both the biological structures and the topological structures of the proteins are maximally conserved. The research on GABN has attracted great attention due to its applications on species evolution, orthology detection and genetic analyses. Most of the existing methods for GABN are difficult to obtain a good tradeoff between the conservation of the biological structures and topological structures. In this paper, we propose a multi-neighborhood learning method for solving GABN (called as CLMNA). CLMNA first models GABN as an optimization of a weighted similarity which evaluates the conserved biological and topological similarities of an alignment, and then it combines a first-proximity, second-proximity and individual-aware proximity learning algorithm to solve the modeled problem. Finally, systematic experiments on 10 pairs of biological networks across 5 species show the superiority of CLMNA over the state-of-the-art network alignment algorithms. They also validate the effectiveness of CLMNA as a refinement method on improving the performance of the compared algorithms.Hemiparesis resulting from a stroke has a direct impact on patients' daily activities. New approaches for motor rehabilitation include Serious Games (SG) because they include (in a motivating way) the three fundamental elements for rehabilitation intensive, repetitive and task-oriented training. This study aims to evaluate the therapeutic effects of a biomedical SG and a scoring system developed for lower limb motor rehabilitation of hemiparetic stroke patients. The SG was inspired by the classic videogame called Pong, where the goal is to control a tennis racquet, but using muscular strength. Navitoclax research buy A knee extensor apparatus was adapted with a load cell and mechanical adjustments for measuring the muscular strength of the quadriceps femoris (QFG) and hamstrings (HSG). A scoring system was proposed to evaluate muscular control. Eleven hemiparetic stroke patients participated in an exercise program using the SG twice a week for ten weeks and only the paretic side was trained. Significant Effect Sizes (d) were found for QFG strength (d=0.
My Website: https://www.selleckchem.com/products/ABT-263.html
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.