NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Occupation-Based Life Expectancy: Actuarial Value in Figuring out Legal Age of retirement.
Our experimental results showed that the proposed EMC-RTP reproduces abnormal beta bursts of BG in parkinsonian conditions while meets requirements of both real-time and computational accuracy as well. Closed-loop DBS experiments using the EMC-RTP suggested that the platform could perform reasonable output under different kinds of DBS strategies, indicating the usability of the platform.Electroencephalogram (EEG)-based neurofeedback has been widely studied for tinnitus therapy in recent years. Most existing research relies on experts' cognitive prediction, and studies based on machine learning and deep learning are either data-hungry or not well generalizable to new subjects. In this paper, we propose a robust, data-efficient model for distinguishing tinnitus from the healthy state based on EEG-based tinnitus neurofeedback. We propose trend descriptor, a feature extractor with lower fineness, to reduce the effect of electrode noises on EEG signals, and a siamese encoder-decoder network boosted in a supervised manner to learn accurate alignment and to acquire high-quality transferable mappings across subjects and EEG signal channels. Our experiments show the proposed method significantly outperforms state-of-the-art algorithms when analyzing subjects' EEG neurofeedback to 90dB and 100dB sound, achieving an accuracy of 91.67%-94.44% in predicting tinnitus and control subjects in a subject-independent setting. Our ablation studies on mixed subjects and parameters show the method's stability in performance.Visual analysis of relational information is vital in most real-life analytics applications. Automatic layout is a key requirement for effective visual display of such information. This paper introduces a new layout algorithm named fCoSE for compound graphs showing varying levels of groupings or abstractions with support for user-specified placement constraints. fCoSE builds on a previous compound spring embedder layout algorithm and makes use of the spectral graph drawing technique for producing a quick draft layout, followed by phases where constraints are enforced and compound structures are properly shown while polishing the layout with respect to commonly accepted graph layout criteria. Experimental evaluation verifies that fCoSE produces quality layouts and is fast enough for interactive applications with small to medium-sized graphs by combining the speed of spectral graph drawing technique with the quality of force-directed layout algorithms while satisfying specified constraints and properly displaying compound structures. An implementation of fCoSE along with documentation and a demo page is freely available on GitHub.Providing guidance during a Visual Analytics session can support analysts in pursuing their goals more efficiently. However, the effectiveness of guidance depends on many factors Determining the right timing to provide it is one of them. Although in complex analysis scenarios choosing the right timing could make the difference between a dependable and a superfluous guidance, an analysis of the literature suggests that this problem did not receive enough attention. In this paper, we describe a methodology to determine moments in which guidance is needed. Our assumption is that the need of guidance would influence the user state-of-mind, as in distress situations during the analytical process, and we hypothesize that such moments could be identified by analyzing the user's facial expressions. We propose a framework composed by a facial recognition software and a machine learning model trained to detect when to provide guidance according to changes of the user facial expressions. We trained the model by interviewing several analysts during their work and ranked multiple facial features based on their relative importance in determining the need of guidance. Finally, we show that by applying only minor modifications to its architecture, our prototype was able to detect a need of guidance on the fly and made our methodology well suited also for real-time analysis sessions. The results of our evaluations show that our methodology is indeed effective in determining when a need of guidance is present, which constitutes a prerequisite to providing timely and effective guidance in VA.The channel redundancy of convolutional neural networks (CNNs) results in the large consumption of memories and computational resources. NX-2127 research buy In this work, we design a novel Slim Convolution (SlimConv) module to boost the performance of CNNs by reducing channel redundancies. Our SlimConv consists of three main steps Reconstruct, Transform, and Fuse. It aims to reorganize and fuse the learned features more efficiently, such that the method can compress the model effectively. Our SlimConv is a plug-and-play architectural unit that can be used to replace convolutional layers in CNNs directly. We validate the effectiveness of SlimConv by conducting comprehensive experiments on various leading benchmarks, such as ImageNet, MS COCO2014, Pascal VOC2012 segmentation, and Pascal VOC2007 detection datasets. The experiments show that SlimConv-equipped models can achieve better performances consistently, less consumption of memory and computation resources than non-equipped counterparts. For example, the ResNet-101 fitted with SlimConv achieves 77.84% top-1 classification accuracy with 4.87 GFLOPs and 27.96M parameters on ImageNet, which shows almost 0.5% better performance with about 3 GFLOPs and 38% parameters reduced.Online Social Networks (OSNs) have attracted a huge number of users, who store and share various images on a daily basis. As a well-known fact, most OSN platforms apply a series of lossy operations on the uploaded images, which could severely degrade the quality of the shared images, negatively affecting the user experiences. In this work, we consider the problem of significantly improving OSN-shared images through applying an optimal pre-filtering prior to image sharing, without any cooperation from the OSN platform itself. Facebook, as one of the most popular and representative OSNs, is chosen as the platform to present our designed pre-filtering strategy. We first treat Facebook as a black box, and thoroughly recover its mechanism of processing color images. Based on the precise knowledge on the image processing pipeline on Facebook, we design the pre-filter under an optimization framework, minimizing the end-to-end distortion between the shared image and the original one. Compared with the directly shared images, our proposed pre-filtering-then-sharing strategy brings significant improvements in terms of both quantitative and qualitative metrics. Extensive experimental results are provided to show the superiority of our proposed method. Finally, we discuss the strategy on how to extend our proposed technique to other OSN platforms.Traditional monocular vision localization methods are usually suitable for short-range area and indoor relative positioning tasks. This paper presents MGG, a novel monocular global geolocation method for outdoor long-range targets. This method takes a single RGB image combined with necessary navigation parameters as input and outputs targets' GPS information under the Global Navigation Satellite System (GNSS). In MGG, we first design a camera pose correction method via pixel mapping to correct the pose of the camera. Then, we use anchor-based methods to improve the detection ability for long-range targets with small image regions. Next, the local monocular vision model (LMVM) with a local structure coefficient is proposed to establish an accurate 2D-to-3D mapping relationship. Subsequently, a soft correspondence constraint (SCC) is presented to solve the local structure coefficient, which can weaken the coupling degree between detection and localization. Finally, targets can be geolocated through optimization theory-based methods and a series of coordinate transformations. Furthermore, we demonstrate the importance of focal length on solving the error explosion problem in locating long-range targets with monocular vision. Extensive experiments on the challenging KITTI dataset as well as applications in outdoor environments with targets located at a long range of up to 150 meters show the superiority of our method.Occlusion is an inevitable and critical problem in unsupervised optical flow learning. Existing methods either treat occlusions equally as non-occluded regions or simply remove them to avoid incorrectness. However, the occlusion regions can provide effective information for optical flow learning. In this paper, we present OIFlow, an occlusion-inpainting framework to make full use of occlusion regions. Specifically, a new appearance-flow network is proposed to inpaint occluded flows based on the image content. Moreover, a boundary dilated warp is proposed to deal with occlusions caused by displacement beyond the image border. We conduct experiments on multiple leading flow benchmark datasets such as Flying Chairs, KITTI and MPI-Sintel, which demonstrate that the performance is significantly improved by our proposed occlusion handling framework.We propose a novel algorithm for the restoration of a degraded hyperspectral image. The proposed algorithm exploits the spatial as well as the spectral redundancy of a degraded hyperspectral image in order to restore it without having any prior knowledge about the type of degradation present. Our work uses superpatches to exploit the spatial and spectral redundancies. We formulate a restoration algorithm incorporating structural similarity index measure as the data fidelity term and nuclear norm as the regularization term. The proposed algorithm is able to cope with additive Gaussian noise, signal dependent Poisson noise, mixed Poisson-Gaussian noise and can restore a hyperspectral image corrupted by dead lines and stripes. As we demonstrate with the aid of extensive experiments, our algorithm is capable of recovering the spectra even in the case of severe degradation. A comparison with the state-of-the-art low rank hyperspectral image restoration methods via experiments with real world and simulated data establishes the competitiveness of the proposed algorithm with the existing methods.This work presents a robust graph mapping approach for the unsupervised heterogeneous change detection problem in remote sensing imagery. To address the challenge that heterogeneous images cannot be directly compared due to different imaging mechanisms, we take advantage of the fact that the heterogeneous images share the same structure information for the same ground object, which is imaging modality-invariant. The proposed method first constructs a robust K -nearest neighbor graph to represent the structure of each image, and then compares the graphs within the same image domain by means of graph mapping to calculate the forward and backward difference images, which can avoid the confusion of heterogeneous data. Finally, it detects the changes through a Markovian co-segmentation model that can fuse the forward and backward difference images in the segmentation process, which can be solved by the co-graph cut. Once the changed areas are detected by the Markovian co-segmentation, they will be propagated back into the graph construction process to reduce the influence of changed neighbors.
My Website: https://www.selleckchem.com/products/nx-2127.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.