Notes
Notes - notes.io |
Halogens are important tracers of various planetary formation and evolution processes, and an accurate understanding of their abundances in the Earth's silicate reservoirs can help us reconstruct the history of interactions among mantle, atmosphere, and oceans. The previous studies of halogen abundances in the bulk silicate Earth (BSE) are based on the assumption of constant ratios of element abundances, which is shown to result in a gross underestimation of the BSE halogen budget. Here we present a more robust approach using a log-log linear model. Using this method, we provide an internally consistent estimate of halogen abundances in the depleted mid-ocean ridge basalts (MORB)-source mantle, the enriched ocean island basalts (OIB)-source mantle, the depleted mantle, and BSE. Unlike previous studies, our results suggest that halogens in BSE are not more depleted compared to elements with similar volatility, thereby indicating sufficient halogen retention during planetary accretion. According to halogen abundances in the depleted mantle and BSE, we estimate that ∼87% of all stable halogens reside in the present-day mantle. Given our understanding of the history of mantle degassing and the evolution of crustal recycling, the revised halogen budget suggests that deep halogen cycle is characterized by efficient degassing in the early Earth and subsequent net regassing in the rest of Earth history. Such an evolution of deep halogen cycle presents a major step toward a more comprehensive understanding of ancient ocean alkalinity, which affects carbon partitioning within the hydrosphere, the stability of crustal and authigenic minerals, and the development of early life.The human extracellular calcium-sensing (CaS) receptor controls plasma Ca2+ levels and contributes to nutrient-dependent maintenance and metabolism of diverse organs. Allosteric modulation of the CaS receptor corrects disorders of calcium homeostasis. Here, we report the cryogenic-electron microscopy reconstructions of a near-full-length CaS receptor in the absence and presence of allosteric modulators. Activation of the homodimeric CaS receptor requires a break in the transmembrane 6 (TM6) helix of each subunit, which facilitates the formation of a TM6-mediated homodimer interface and expansion of homodimer interactions. This transformation in TM6 occurs without a positive allosteric modulator. Two modulators with opposite functional roles bind to overlapping sites within the transmembrane domain through common interactions, acting to stabilize distinct rotamer conformations of key residues on the TM6 helix. The positive modulator reinforces TM6 distortion and maximizes subunit contact to enhance receptor activity, while the negative modulator strengthens an intact TM6 to dampen receptor function. In both active and inactive states, the receptor displays symmetrical transmembrane conformations that are consistent with its homodimeric assembly.In cuprate superconductors, due to strong electronic correlations, there are multiple intertwined orders which either coexist or compete with superconductivity. Among them, the antiferromagnetic (AF) order is the most prominent one. In the region where superconductivity sets in, the long-range AF order is destroyed. Yet the residual short-range AF spin fluctuations are present up to a much higher doping, and their role in the emergence of the superconducting phase is still highly debated. Here, by using a spin-polarized scanning tunneling microscope, we directly visualize an emergent incommensurate AF order in the nearby region of Fe impurities embedded in the optimally doped Bi2Sr2CaCu2O8+δ (Bi2212). Remarkably, the Fe impurities suppress the superconducting coherence peaks with the gapped feature intact, but pin down the ubiquitous short-range incommensurate AF order. Our work shows an intimate relation between antiferromagnetism and superconductivity.Mechanical properties are fundamental to structural materials, where dislocations play a decisive role in describing their mechanical behavior. Although the high-yield stresses of multiprincipal element alloys (MPEAs) have received extensive attention in the last decade, the relation between their mechanistic origins remains elusive. Our multiscale study of density functional theory, atomistic simulations, and high-resolution microscopy shows that the excellent mechanical properties of MPEAs have diverse origins. The strengthening effects through Shockley partials and stacking faults can be decoupled in MPEAs, breaking the conventional wisdom that low stacking fault energies are coupled with wide partial dislocations. This study clarifies the mechanistic origins for the strengthening effects, laying the foundation for physics-informed predictive models for materials design.G protein-coupled receptors (GPCRs) are the largest family of human proteins. They have a common structure and, signaling through a much smaller set of G proteins, arrestins, and effectors, activate downstream pathways that often modulate hallmark mechanisms of cancer. Because there are many more GPCRs than effectors, mutations in different receptors could perturb signaling similarly so as to favor a tumor. We hypothesized that somatic mutations in tumor samples may not be enriched within a single gene but rather that cognate mutations with similar effects on GPCR function are distributed across many receptors. To test this possibility, we systematically aggregated somatic cancer mutations across class A GPCRs and found a nonrandom distribution of positions with variant amino acid residues. Individual cancer types were enriched for highly impactful, recurrent mutations at selected cognate positions of known functional motifs. We also discovered that no single receptor drives this pattern, but rather multiple receptors contain amino acid substitutions at a few cognate positions. Phenotypic characterization suggests these mutations induce perturbation of G protein activation and/or β-arrestin recruitment. These data suggest that recurrent impactful oncogenic mutations perturb different GPCRs to subvert signaling and promote tumor growth or survival. The possibility that multiple different GPCRs could moonlight as drivers or enablers of a given cancer through mutations located at cognate positions across GPCR paralogs opens a window into cancer mechanisms and potential approaches to therapeutics.Microtubules are dynamic cytoskeletal polymers that spontaneously switch between phases of growth and shrinkage. The probability of transitioning from growth to shrinkage, termed catastrophe, increases with microtubule age, but the underlying mechanisms are poorly understood. selleck inhibitor Here, we set out to test whether microtubule lattice defects formed during polymerization can affect growth at the plus end. To generate microtubules with lattice defects, we used microtubule-stabilizing agents that promote formation of polymers with different protofilament numbers. By employing different agents during nucleation of stable microtubule seeds and the subsequent polymerization phase, we could reproducibly induce switches in protofilament number and induce stable lattice defects. Such drug-induced defects led to frequent catastrophes, which were not observed when microtubules were grown in the same conditions but without a protofilament number mismatch. Microtubule severing at the site of the defect was sufficient to suppress catastrophes. We conclude that structural defects within the microtubule lattice can exert effects that can propagate over long distances and affect the dynamic state of the microtubule end.Brains learn tasks via experience-driven differential adjustment of their myriad individual synaptic connections, but the mechanisms that target appropriate adjustment to particular connections remain deeply enigmatic. While Hebbian synaptic plasticity, synaptic eligibility traces, and top-down feedback signals surely contribute to solving this synaptic credit-assignment problem, alone, they appear to be insufficient. Inspired by new genetic perspectives on neuronal signaling architectures, here, we present a normative theory for synaptic learning, where we predict that neurons communicate their contribution to the learning outcome to nearby neurons via cell-type-specific local neuromodulation. Computational tests suggest that neuron-type diversity and neuron-type-specific local neuromodulation may be critical pieces of the biological credit-assignment puzzle. They also suggest algorithms for improved artificial neural network learning efficiency.Recent studies have revealed that extensive heterogeneity of biological systems arises through various routes ranging from intracellular chromosome segregation to spatiotemporally varying biochemical stimulations. However, the contribution of physical microenvironments to single-cell heterogeneity remains largely unexplored. Here, we show that a homogeneous population of non-small-cell lung carcinoma develops into heterogeneous subpopulations upon application of a homogeneous physical compression, as shown by single-cell transcriptome profiling. The generated subpopulations stochastically gain the signature genes associated with epithelial-mesenchymal transition (EMT; VIM, CDH1, EPCAM, ZEB1, and ZEB2) and cancer stem cells (MKI67, BIRC5, and KLF4), respectively. Trajectory analysis revealed two bifurcated paths as cells evolving upon the physical compression, along each path the corresponding signature genes (epithelial or mesenchymal) gradually increase. Furthermore, we show that compression increases gene expression noise, which interplays with regulatory network architecture and thus generates differential cell-fate outcomes. The experimental observations of both single-cell sequencing and single-molecule fluorescent in situ hybridization agrees well with our computational modeling of regulatory network in the EMT process. These results demonstrate a paradigm of how mechanical stimulations impact cell-fate determination by altering transcription dynamics; moreover, we show a distinct path that the ecology and evolution of cancer interplay with their physical microenvironments from the view of mechanobiology and systems biology, with insight into the origin of single-cell heterogeneity.The alternating cell specifications of root epidermis to form hair cells or nonhair cells in Arabidopsis are determined by the expression level of GL2, which is activated by an MYB-bHLH-WD40 (WER-GL3-TTG1) transcriptional complex. The phytohormone ethylene (ET) has a unique effect of inducing N-position epidermal cells to form root hairs. However, the molecular mechanisms underlying ET-induced ectopic root hair development remain enigmatic. Here, we show that ET promotes ectopic root hair formation through down-regulation of GL2 expression. ET-activated transcription factors EIN3 and its homolog EIL1 mediate this regulation. Molecular and biochemical analyses further revealed that EIN3 physically interacts with TTG1 and interferes with the interaction between TTG1 and GL3, resulting in reduced activation of GL2 by the WER-GL3-TTG1 complex. Furthermore, we found through genetic analysis that the master regulator of root hair elongation, RSL4, which is directly activated by EIN3, also participates in ET-induced ectopic root hair development.
Here's my website: https://www.selleckchem.com/products/azd9291.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team