Notes
![]() ![]() Notes - notes.io |
In this mini-review, we discuss principal discoveries with scRNA-seq in the field of prenatal and postnatal lung development. In addition, we examine challenges and expectations, and propose future steps associated with the use of scRNA-seq to study developmental lung diseases.Gram-negative bacteria are becoming resistant to almost all currently available antibiotics. Systemically designed antimicrobial peptides (AMPs) are attractive agents to enhance the activities of antibiotics. We constructed a small Pro-scanning library using amphipathic model peptides. Measurements of minimum inhibitory concentration (MIC) against Escherichia coli and hemolytic activities showed that one of the Pro-hinged peptides, KL-L9P, displays the highest specificity toward E. coli. Moreover, KL-L9P sensitizes E. coli to be responsive to most antibiotics that are not active against Gram-negative bacteria. The results of biochemical experiments show that KL-L9P promotes the rearrangement of the bacterial membrane that enables hydrophobic antibiotics to permeate. Finally, the results of animal tests demonstrate that KL-L9P strongly sensitizes Gram-negative bacteria to linezolid (Lzd), rifampicin (Rif), or clarithromycin (Clr). Thus, KL-L9P operates as a sensitizer to extend the antibacterial activity of most antibiotics to Gram-negative bacteria.Smart surfaces prepared using superhydrophobic coatings have been used to control the movement of tiny aqueous droplets for many years. However, the control of both aqueous droplets and oily droplets is still a challenge. Herein, a novel smart superamphiphobic composite film is developed with a superamphiphobic and magnetic surface as well as a soft elastic substrate for liquid droplets manipulation. The raspberry-like nanoparticles on the surface are synthesized by co-hydrolyzation of fluoroalkyl silane and tetraethoxysilane on iron oxide nanoparticles. The resulting composite nanoparticles (F/SiO2@Fe3O4 NPs) exhibit excellent superhydrophobicity (WCA of about 170°) and superoleophobicity (OCA of about 160°) as well as magnetism (saturated magnetization value of 12.0 emug-1). The morphologies of the F/SiO2@Fe3O4 NPs were investigated by transmission electron microscopy and scanning electron microscopy. Chemical composition and magnetization value of these magnetic nanoparticles as well as the magnetic field induced droplets manipulation behavior of the smart surface were also evaluated. The smart surface can realize the manipulation of both water droplets and oil droplets, which demonstrates potential applications in microfluidic technologies.We use direct simulations of particle-polyelectrolyte mixtures using the single chain in mean field framework to extract the phase diagram for such systems. At high charges of the particles and low concentration of polymers, we observe the formation of a coacervate phase involving the particles and polyelectrolytes. At low particle charges and/or high concentration of polymers, the mixture undergoes a segregative phase separation into particle-rich and polymer-rich phases, respectively. We also present results for the influence of particle charge heterogeneity on the phase diagram.Scaling information bits to ever smaller dimensions is a dominant drive for information technology (IT). Nanostructured phase change material emerges as a key player in the current green-IT endeavor with low power consumption, functional modularity, and promising scalability. In this work, we present the demonstration of microwave AC voltage induced phase change phenomenon at ∼3 GHz in single Sb2Te3 nanowires. The resistance change by a total of 6-7 orders of magnitude is evidenced by a transition from the crystalline metallic to the amorphous semiconducting phase, which is cross-examined by temperature dependent transport measurement and high-resolution electron microscopy analysis. This discovery could potentially tailor multistate information bit encoding and electrical addressability along a single nanowire, rendering technology advancement for neuro-inspired computing devices.Temperature dependences of electron paramagnetic resonance (EPR) spectra of an imidazoline nitroxide biradical spin probe in a series of room-temperature ionic liquids in the temperature range 124-390 K have been quantitatively simulated. The unusual asymmetric EPR spectrum shape previously observed in these systems [Kokorin et al., Appl. Magn. Res. 48 (2016) 287] is shown to originate from anisotropic rotational diffusion of the probe molecule. All experimental spectra were quantitatively reproduced in simulation using a unified set of geometrical and magnetic parameters of the spin probe, which were found to be fully consistent with the biradical geometry obtained from density functional theory calculations. Temperature dependences of rotation diffusion coefficient of the probe characterize the molecular mobility of the ionic liquid, whereas the temperature dependences of the spin-exchange integral J and of the isotropic hyperfine interaction constant, aN, are shown to reflect the intramolecular conformation motions of the biradical probe.Activity or, more generally, property landscapes (PLs) have been considered as an attractive way to visualize and explore structure-property relationships (SPRs) contained in large data sets of chemical compounds. For graphical analysis, three-dimensional representations reminiscent of natural landscapes are particularly intuitive. So far, the use of such landscape models has essentially been confined to qualitative assessment. We describe recent efforts to analyze PLs in a more quantitative manner, which make it possible to calculate topographical similarity values for comparison of landscape models as a measure of relative SPR information content.Second-harmonic generation (SHG) is a nonlinear optical process that converts two identical photons into a new one with doubled frequency. Two-dimensional semiconductors represented by transition-metal dichalcogenides are highly efficient SHG media because of their excitonic resonances. Using spectral phase interferometry, here we directly show that SHG in heterobilayers of MoS2 and WS2 is governed by optical interference between two coherent SH fields that are phase-delayed differently in each material. We also quantified the frequency-dependent phase difference between the two, which agreed with polarization-resolved data and first-principles calculations on complex susceptibility. The second-harmonic analogue of Young's double-slit interference shown in this work demonstrates the potential of custom-designed parametric generation by atom-thick nonlinear optical materials.This work presents quantum chemical G3(MP2,CC)//B2PLYPD3/6-311G(d,p) calculations of the potential energy surface for the indenyl (C9H7) + cyclopentadienyl (C5H5) reaction followed by unimolecular decomposition of the C14H11 radicals formed as the primary products, as well as the Rice-Ramsperger-Kassel-Marcus master equation (RRKM-ME) calculations to predict temperature- and pressure-dependent reaction rate constants and product branching ratios. The reaction begins with the barrierless recombination of indenyl and cyclopentadienyl forming a C14H12 molecule with a new C-C bond connecting two five-membered rings, which subsequently dissociates to C14H11 radicals by H losses. The primary products of the C9H7 + C5H5 → C14H11 + H reaction can directly decompose by another H loss to benzofulvalene, and this pathway is most favorable in terms of the entropy factor and hence is preferable at higher temperatures. Otherwise, the initial C14H11 isomers can undergo significant structural rearrangements before eliminatinto involve two consecutive H atom losses leading to a fulvalene-like product, with subsequent H-assisted isomerization of the latter to a benzenoid PAH.Aromatic aldehydes elicit their antisickling effects primarily by increasing the affinity of hemoglobin (Hb) for oxygen (O2). However, challenges related to weak potency and poor pharmacokinetic properties have hampered their development to treat sickle cell disease (SCD). Herein, we report our efforts to enhance the pharmacological profile of our previously reported compounds. These compounds showed enhanced effects on Hb modification, Hb-O2 affinity, and sickling inhibition, with sustained pharmacological effects in vitro. Importantly, some compounds exhibited unusually high antisickling activity despite moderate effects on the Hb-O2 affinity, which we attribute to an O2-independent antisickling activity, in addition to the O2-dependent activity. Structural studies are consistent with our hypothesis, which revealed the compounds interacting strongly with the polymer-stabilizing αF-helix could potentially weaken the polymer. In vivo studies with wild-type mice demonstrated significant pharmacologic effects. Our structure-based efforts have identified promising leads to be developed as novel therapeutic agents for SCD.A 1,3-sulfonyl migration of difluorovinyl sulfonates initiated by a catalytic amount of silver fluoride is presented. α,α-Difluoro-β-ketosulfones were successfully prepared in excellent yields. This method features high chemoselectivity, good functional group tolerance, high atom economy, and mild, environmentally benign reaction conditions. Furthermore, mechanistic experiments indicate that this migration proceeds in an intermolecular pathway and the corresponding sulfinates are possible intermediates.Raman multivariate curve resolution vibrational spectroscopy and X-ray crystallography are used to quantify changes in the gauche-trans conformational equilibrium of 1-bromopropane (1-BP) upon binding to α-cyclodextrin (α-CD). Both conformers of 1-BP are found to bind to α-CD, although binding favors the unfolded trans conformation. Temperature-dependent measurements of the binding-induced change in the 1-BP conformation equilibrium constant indicate that the trans conformer is both enthalpically and entropically stabilized in the host cavity.We show that adapting the knowledge developed for the disordered Mott-Hubbard model to nanoparticle (NP) solids can deliver many very helpful new insights. We developed a hierarchical nanoparticle transport simulator (HINTS), which builds from localized states to describe the disorder-localized and Mott-localized phases of NP solids and the transitions out of these localized phases. We also studied the interplay between correlations and disorder in the corresponding multiorbital Hubbard model at and away from integer filling by dynamical mean field theory. This DMFT approach is complementary to HINTS, as it builds from the metallic phase of the NP solid. The mobility scenarios produced by the two methods are strikingly similar and account for the mobilities measured in NP solids. We conclude this work by constructing the comprehensive phase diagram of PbSe NP solids on the disorder-filling plane.Its lower bandgap makes formamidinium lead iodide (FAPbI3) a more suitable candidate for single-junction solar cells than pure methylammonium lead iodide (MAPbI3). However, its structural and thermodynamic stability is improved by introducing a significant amount of MA and bromide, both of which increase the bandgap and amplify trade-off between the photocurrent and photovoltage. Here, we simultaneously stabilized FAPbI3 into a cubic lattice and minimized the formation of photoinactive phases such as hexagonal FAPbI3 and PbI2 by introducing 5% MAPbBr3, as revealed by synchrotron X-ray scattering. We were able to stabilize the composition (FA0.95MA0.05Cs0.05)Pb(I0.95Br0.05)3, which exhibits a minimal trade-off between the photocurrent and photovoltage. This material shows low energetic disorder and improved charge-carrier dynamics as revealed by photothermal deflection spectroscopy (PDS) and transient absorption spectroscopy (TAS), respectively. This allowed the fabrication of operationally stable perovskite solar cells yielding reproducible efficiencies approaching 22%.
Read More:
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team