Notes
Notes - notes.io |
To evaluate new mothers' experiences of infant feeding support.
A postal survey developed for this study was sent to all new mothers in ten local government areas in Victoria, Australia when their baby was six months of age. Questions explored infant feeding methods, feeding support services, and experiences of infant feeding support. This survey made up one component of the Supporting breastfeeding In Local Communities (SILC) cluster randomised controlled trial.
997/4127 women (24%) completed the survey between 15 April 2013 and 31 July 2013. Women received infant feeding support from multiple sources, including professionals, family members, and peers. Overall, 88% reported receiving adequate infant feeding support. Women who reported not receiving adequate infant feeding support were less likely to be giving any breast milk at six months compared to those reporting adequate support (OR = 0.59; 95% CI 0.40, 0.88). Adjusting for breastfeeding intention and parity did not alter the association (Adj. OR = 0.60; 95% CI 0.40, 0.90). Women were most satisfied when they received accessible, available, consistent professional infant feeding support provided in a non-judgemental and reassuring way. Women were dissatisfied when there were barriers restricting access to support, or when they received conflicting advice or support that made them feel guilty, pressured or judged.
Regardless of infant feeding method, women wanted accessible, non-judgemental support. Given that receiving adequate support was associated with more breast milk feeding at six months, care providers should ensure accessible infant feeding support is available to all new mothers.
Regardless of infant feeding method, women wanted accessible, non-judgemental support. Given that receiving adequate support was associated with more breast milk feeding at six months, care providers should ensure accessible infant feeding support is available to all new mothers.
In jurisdictions where midwifery and nursing are autonomous and separate health care professions, little is known about how they collaborate during the delivery of perinatal health care services.
Midwifery became a regulated profession in the province of Nova Scotia, Canada in 2009. Since regulation, midwives and nurses have worked together at three models sites for the delivery of midwifery services and perinatal care.
How do midwives and nurses collaborate during the provision of birthing care in Nova Scotia, Canada?
This was an instrumental case study guided by feminist poststructuralism. Individual interviews of 17 participants were audio-recorded and transcribed verbatim. Twenty-five documents were reviewed, and field notes were gathered. Feminist poststructuralist discourse analysis was used.
Midwives and nurses collaborated well together. Participants described how positive collaborative experiences could influence a new way for midwives and nurses to work together. In this paper we present the theme Moving forward A Modern Model for Nurses and Midwives working together, and its sub-themes of 1)'The birthing culture has changed' and 2) 'Allies and advocates'.
Within the global context of strengthening midwifery and nursing, this study illustrated the potential for developing formal, collaborative perinatal models of care led by midwife and nurse teams to address inequities in perinatal health care services.
Midwives and nurses need more opportunities to collaborate and to build professional relationships. Establishing a midwife-led and nurse supported model of care may transform existing perinatal health care values, beliefs, and practices.
Midwives and nurses need more opportunities to collaborate and to build professional relationships. Establishing a midwife-led and nurse supported model of care may transform existing perinatal health care values, beliefs, and practices.The ability to manipulate the optical appearance of materials is essential in virtually all products and areas of technology. Structurally coloured chiral nematic cellulose nanocrystal (CNC) films proved to be an excellent platform to design optical appearance, as their response can be moulded by organising them in hierarchical architectures. Here, we study how thermal treatments influence the optical appearance of structurally coloured CNC films. We demonstrate that the CNCs helicoidal architecture and the chiral optical response can be maintained up to 250 °C after base treatment and cross-linking with glutaraldehyde, while, alternatively, an exposure to vacuum allows for the helicoidal arrangement to be further preserved up to 900 °C, thus producing aromatic chiral carbon. The ability to retain the helicoidal arrangement, and thus the visual appearance, in CNC films up to 250 °C is highly desirable for high temperature colour-based industrial applications and for passive colorimetric heat sensors. Similarly, the production of chiral carbon provides a new type of conductive carbon for electrochemical applications.Drugs such as immunosuppressants and glucocorticoids used for the treatment of inflammatory bowel disease (IBD) have certain troubling side effects. Polysaccharide-based nanocarriers with high safety and bioavailability are often used in the construction of colon-targeted drug nanodelivery systems (DNSs). It can help the drug resist the harsh environment of gastrointestinal tract, improve stability and concentrate on the intestinal inflammation regions as much as possible, which effectively reduces drug side effects and enhances its bioavailability. Certain polysaccharides, as prebiotics, can not only endow DNSs with the ability to target the colon based on enzyme responsive properties, but also cooperate with drugs to alleviate IBD due to its good anti-inflammatory activity and intestinal microecological regulation. The changes in the gastrointestinal environment of patients with IBD, the colon-targeted drug delivery process of polysaccharide-based nanocarriers and its synergistic treatment mechanism for IBD were reviewed. Polysaccharides used in polysaccharide-based nanocarriers for IBD were summarized.Design and fabrication of structurally optimized three-dimensional porous materials are highly desirable for engineering applications. Herein, through a facile bidirectional freezing technique, we prepared superelastic biomass sponges in air and underwater, which possess biomimetic porous sandwich-like architectures with lamellar layers interconnected by porous microstructures, similar to the structure of rice stems. This distinctive architecture was obtained by incorporating Typha orientalis fibers (TOFs) and graphene oxide (GO) nanosheets into sodium alginate (SA) matrix, in which SA flakes and GO nanosheets were intimately grown along TOFs. The porous sandwich-like microstructure allows stress to be distributed throughout the lamellar to avoid stress concentration and endows SA/TOFs/GO sponge with excellent mechanical compressibility and recoverability. Especially, underwater superelasticity and superoleophobicity of the sponge facilitates removal of water-miscible contaminants or oil/water separation with high efficiency. This novel strategy for the design biomimetic architecture of superelastic biomass sponge can promote its application for protecting environment.Natural polysaccharides derived from plants, fungi and animals are well known as ideal functional products with multiple biological activities and few side effects. B102 Among them, natural occurring sulfated polysaccharides and those from synthetic origin are increasingly causing more attention worldwide, as they have been proved to possess broad-spectrum antiviral activities. The focus of this review is on analyzing the current state of knowledge about the origin of sulfated polysaccharides, more importantly, the potential connection between the structure and their antiviral mechanisms. Sulfated polysaccharide may interfere with a few steps in the virus life cycle (i.e. adsorption, invasion, transcription and replication) and/or improve the host antiviral immune response. Moreover, their antiviral activity was affected by degree of substitution, substitution position, molecular weight, and spatial conformation. This review may provide approach for the development of novel and potent therapeutic agents.Pseudobulb of Cremastra appendiculata (Orchidaceae) is a traditionally used medicine in China for treatment of certain cancers. The polysaccharides from this medicinal plant are poorly understood. Therefore, we focused on the isolation and fine structure characterization of C. appendiculata polysaccharides. After isolation by DE-52 and Superdex 200 gel chromatography, the purified polysaccharide (named as CAP) with Mw 557.5 kDa was obtained with a narrow and symmetric peak presented in the HPGPC. The monosaccharide composition results showed in HPAEC that CAP was a heteropolysaccharide composed of glucose and mannose at a molar ratio roughly 0.340.66. The methylation results indicated that CAP was a 1,4-β-mannose and 1,4-β-glucose linear linkage. The further NMR studies suggested a 0.208 acetylation substitution of CAP and a hexasaccharide repeating unit composed of 1,4-β-mannose and1, 4-β-glucose in the CAP structure. The chemical structure of CAP was confirmed further by the specific glucanase and mannanase hydrolysis results.Chitosan and gelatin are attractive polymeric feedstocks for developing environmentally benign, bio-safe, and functional materials. However, cost-effective methods to achieve advantageous materials properties and tailor their functionality are still lacking, but interesting. Herein, we found that physically mixing chitosan and gelatin at 11 (w/w) ratio resulted in materials with properties (higher Young's modulus (603.8 MPa) and tensile strength (33.6 MPa), and reduced water uptake (45%) after 6 h of water soaking) better than those of the materials based on mainly chitosan or gelatin. We attribute this synergy to the ionic and hydrogen-bonding interactions between the two biopolymers enabled by high-viscosity thermomechanical processing. Despite the lowest hygroscopicity, the 11 chitosangelatin films displayed the highest surface hydrophilicity. Besides, addition of gelatin to chitosan led to films being brighter, more transparent and amorphous. Thus, this work has generated new understanding to enhance the application of biopolymers for e.g. packaging, coating, and biomedical applications.In this study, we fabricate physically dual-crosslinked cellulose-based hydrogels by varying coordination bonding effects with the addition of either divalent or trivalent metal cations. The first crosslinked network is created by metal-carboxylate coordination bonds between the cellulose nanofibrils that have abundant carboxyl groups and the metal cations. The second crosslinked network is formed by the reaction of tetra-functional borate ion complex and the hydroxyl groups in polyvinyl alcohol. These physically dual-crosslinked networks are strongly interwoven by non-sacrificial hydrogen bonds, this dual-crosslinked network leads to enhanced recovery characteristics in the resulting hydrogels. We use three interval thixotropic testing to investigate the deformation and recovery behaviors of the hydrogels and plot their structural deformation parameters in phase diagrams to understand the underlying complexity of energy dissipation and viscoelastic dynamics of the dual-crosslinked hydrogels.
Website: https://www.selleckchem.com/products/b102-parp-hdac-in-1.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team