Notes
Notes - notes.io |
The results exhibited the setup has the potential for industrial applications.Implications Fabricating a pilot-scale installation integrated of the improved sieve-tray tower and wet electrostatic precipitator to remove spraying exhaust gas in the furniture factory efficiently. This tech meets China's VOC emission policy.Traditional cancer therapy choices for clinicians are surgery, chemotherapy, radiation and immune therapy which are used either standalone therapies or in various combinations. Other physical modalities beyond ionizing radiation include photodynamic therapy and heating and the more recent approach referred to as Tumor Treating Fields (TTFields). TTFields are intermediate frequency, low-intensity, alternating electric fields that are applied to tumor regions and cells using noninvasive arrays. TTFields have revolutionized the treatment of newly diagnosed and recurrent glioblastoma (GBM) and unresectable and locally advanced malignant pleural mesothelioma (MPM). TTFields are thought to kill tumor cells predominantly by disrupting mitosis; however it has been shown that TTFields increase efficacy of different classes of drugs, which directly target mitosis, replication stress and DNA damage pathways. Hence, a detailed understanding of TTFields' mechanisms of action is needed to use this therapy effectively in the clinic. Recent findings implicate TTFields' role in different important pathways such as DNA damage response and replication stress, ER stress, membrane permeability, autophagy, and immune response. This review focuses on potentially novel mechanisms of TTFields anti-tumor action and their implications in completed and ongoing clinical trials and pre-clinical studies. Moreover, the review discusses advantages and strategies using chemotherapy agents and radiation therapy in combination with TTFields for future clinical use.Within just a month of the first case of idiopathic pneumonia, on 30 January 2020, WHO declared the outbreak, a Public Health Emergency of International Concern. On 11 February 2019, the Internal Committee on Taxonomy of Virus (ICTV) announced the name of the novel virus as "severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)" and on 11 March 2020, WHO declared it a global pandemic. As a preventive measure, the government of several countries has imposed quarantine and isolation for preventing the further spread of disease. Both of these restrict outdoor activities, which can directly affect the lifestyle of citizens. Quarantine for the long term can result in increased lifestyle disease, mainly cardiovascular diseases, and obesity.Developing high-efficiency photocatalysts for clean energy generation is a grand challenge, which requires simultaneously steering photocarrier dynamics and chemical activity for a specific reaction. To this end, here for the first time, we explore the real-time photocarrier transport property and catalytic mechanism of nitrogen reduction reaction (NRR) at the interface of bismuth oxyhalides (BiOX, X = Cl, Br, and I), an inexpensive and green semiconductor. By time-dependent ab initio non-adiabatic molecular dynamics simulations, we show that the separation and recombination processes of excited carriers as well as the catalytic activity can be concurrently optimized by precise band structure engineering. The exact influence of impurity states and heterojunction on the reduction power and lifetime of photogenerated carriers, light absorbance, and NRR activity/selectivity of BiOX are clearly unveiled, to provide essential physical insights for improving the photocatalytic efficiency of semiconductors for practical solar energy conversion and hydrogen fuel storage.The addition of NO2 to Group IV (MO2) n and Group VI (MO3) n (n = 1-3) nanoclusters was studied using both density functional theory (DFT) and coupled cluster theory (CCSD(T)). The structures and overall binding energetics were predicted for Lewis acid-base addition without transfer of spin (a physisorption-type process) and the formation of either cluster-ONO (HONO-like or bidentate bonding) or NO3- formation where for both the spin is transferred to the metal oxide clusters (a chemisorption-type process). Only chemisorption of NO2 is predicted to be thermodynamically allowed at temperatures ≥298 K for Group IV (MO2) n clusters with the formation of surface chemisorbed NO2 being by far the most energetically favorable. The ligand binding energies (LBEs) for physisorption and chemisorption on the TiO2 nanoclusters are consistent with computational studies of the bulk solids. Chemisorption is only predicted to occur for (CrO3) n clusters in the form of a terminal nitrate containing species whereas the larger chemisorbed nitrate structures for (MoO3) n and (WO3) n were found to be metastable and unlikely to form in any appreciable amount at temperatures of 298 K and higher. NO2 is predicted to only be capable of physisorbing to (MoO3) n and (WO3) n at lower temperatures and therefore unlikely to bind NO2 at temperatures ≥298 K. Correlations between the (MO3) n NO2 ligand bond energies and the chemical properties of the parent (MO3) n clusters (Lewis acidity, ionization potentials, excitation energies, and M = O/M-O bond strengths) are described.Unstable detection environment is one of the biggest interferences for in situ surface-enhanced Raman spectroscopy (SERS) using in real-time monitoring of toxic pollutants, leading to unreliable results. To address this problem, we have designed and prepared a cavity-based particle-in-quasicavity (PIQC) architecture composed of hierarchical ZnO/Ag nanosheets and nanoprotrusions for improving the in situ SERS performance under a liquid environment. Benefitting from the special cascaded optical field mode, the PIQC ZnO/Ag exhibits excellent in situ SERS detectability, with 10-18 M of limit of detection for rhodamine 6G and 12.8% of signal relative standard deviation value. Furthermore, by means of a microfluidic chip, this PIQC structure is proved to have the quantitative analysis feasibility and realizes real-time monitoring of the 3,3',4,4'-tetrachlorobiphenyl, a representative global environmental hazard, under the flowing environment. The strategy in this paper provides a brand new idea to promote the application of in situ SERS in contaminant monitoring and is also instructive for light control in other optical fields.Liquid chromatography and Raman spectroscopy (LC-Raman system) were combined and developed with the aid of the vertical flow method that enhances the Raman signal intensity. The LC-Raman system enabled the online acquisition of the nonresonance Raman spectrum of LC eluates. We employed singular value decomposition (SVD) and subsequent reconstruction of the components for the analysis of two-dimensional (temporal and spectral) data. The obtained components were consistent with the Raman spectra and elution patterns of the samples, indicating the appropriateness of the SVD-based procedure. The rise and fall times of the elution band of the temporal component were considered as the instrumental function. D2O mixed with H2O exhibited increased full width at half maximum of the elution band of up to 30% in comparison to the calculated value because of diffusion. Band broadening was less significant in the case in which an immiscible solute (pentane) was mixed with H2O. The limits of detection and quantitation were 1.2 ± 0.1, 2.1 ± 0.1, and 2.7 ± 0.1 mM and 4.1 ± 0.1, 6.9 ± 0.1, and 9.1 ± 0.2 mM for the ortho-, meta-, and para-isomers of methoxyphenol, respectively. The nonresonance Raman experiment provides the molecular specificity to LC on the basis of the inherent properties of eluates.Multimodal imaging-guided therapy holds great potential for precise theranostics of cancer metastasis. However, imaging agents enabling the convergence of complementary modalities with therapeutic functions to achieve perfect theranostics have been less exploited. This study reports the construction of a multifunctional nanoagent (FIP-99mTc) that comprises Fe3O4 for magnetic resonance imaging, radioactive 99mTc for single-photon-emission computed tomography, and IR-1061 to serve for the second near-infrared fluorescence imaging, photoacoustic imaging, and photothermal therapy treatment of cancer metastasis. The nanoagent possessed superior multimodal imaging capability with high sensitivity and resolution attributing to the complement of all the imaging modalities. Moreover, the nanoagent showed ideal photothermal conversion ability to effectively kill tumor cells at low concentration and power laser irradiation. In the in vivo study, FIP-99mTc confirmed the fast accumulation and clear delineation of metastatic lymph nodes within 1 h after administration. Attributing to the efficient uptake and photothermal conversion, FIP-99mTc could raise the temperature of metastatic lymph nodes to 54 °C within 10 min laser irradiation, so as to facilitate tumor cell ablation. More importantly, FIP-99mTc not only played an active role in suppressing cancer growth in metastatic lymph nodes with high efficiency but also could effectively prevent further lung metastasis after resection of the primary tumor. This study proposes a simple but effective theranostic approach toward lymph node metastasis.The demand for charcoal in Africa is growing rapidly, driven by urbanization and lack of access to electricity. Charcoal production and use, including plastic burning to initiate combustion, release large quantities of trace gases and particles that impact air quality and climate. Here, we develop an inventory of current (2014) and future (2030) emissions from the charcoal supply chain in Africa that we implement in the GEOS-Chem model to quantify the contribution of charcoal to surface concentrations of PM2.5 and ozone and direct radiative forcing due to aerosols and ozone. We estimate that the charcoal industry in 2014 required 140-460 Tg of biomass and 260 tonnes of plastic and that industry emissions could double by 2030, so that methane emissions from the charcoal industry could outcompete those from open fires by 2025. In 2014, the largest enhancements in PM2.5 (0.5-1.4 μg m-3) and ozone (0.4-0.7 ppbv) occur around the densely populated cities in East and West Africa. Cooling due to aerosols (-100 to -300 mW m-2) is concentrated over dense cities, whereas warming due to ozone is widespread, peaking at 4.2 mW m-2 over the Atlantic Ocean. These effects will worsen with ongoing dependence on this energy source, spurred by rapid urbanization and absence of viable cleaner alternatives.Leonuketal is an 8,9-seco-labdane terpenoid with a unique tetracyclic structure, owing to a diversity-generating biosynthetic C-C bond cleavage event. The first total synthesis of leonuketal is reported, featuring a Ti(III)-mediated reductive cyclization of an epoxy nitrile ether, an unusual ring-opening alkyne formation as part of an auxiliary ring strategy, and the previously undescribed Au(I)-catalyzed cyclization of a β-keto(enol)lactone to assemble the core spiroketal motif.Boric acid, B(OH)3, is proved to be an efficient hydroxide reagent in converting (hetero)aryl halides to the corresponding phenols with a Pd catalyst under mild conditions. Various phenol products were obtained in good to excellent yields. This transformation tolerates a broad range of functional groups and molecules, including base-sensitive substituents and complicated pharmaceutical (hetero)aryl halide molecules.
Read More:
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team