NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Liolophura varieties splendour along with geographical distribution patterns and their divergence as well as development history around the northwestern Pacific cycles seacoast.
The estimation result showed that the conventional decomposition strategy underestimates the importance of dyspnea as a mechanism of this disease. Specifically, the strategy of reclassifying fully mediated interaction revealed that 50% of the average causal effect is attributable to mediating effects, particularly the mediating effect of dyspnea.Heavy metals such as beryllium (Be) have been identified as toxic for plants with a negative impact on plant growth. Therefore, there is an urgent need for environmentally friendly techniques to reduce Be toxicity on plant growth and productivity. To this end, arbuscular mycorrhizal fungi (AMF) are widely applied to induce plant growth and stress tolerance. However, how AMF-plant symbiosis can support plants under Be stress has not been studied. Accordingly, we investigated the physiological and biochemical responses of AMF inoculated ryegrass and chickpea plants to Be stress. The associated changes in Be uptake and accumulation, photosynthesis, oxidative stress, carbon and nitrogen metabolism were studied. Soil contamination with Be induced higher Be accumulation, particularly in ryegrass, which consequentially reduced plant growth and photosynthesis. However, photorespiration and oxidative damage (H2O2 accumulation, lipid oxidation, and LOX activity) were increased, mainly in ryegrass. In both plant species, AMF inoculation reduced Be accumulation and mitigated growth inhibition and oxidative damage, but to a more extent in ryegrass. This could be explained by improved photosynthesis as well as the upregulation of osmoprotectants i.e., sucrose and proline biosynthesis pathways. The increase in proline level was consistent with higher nitrogen (N) metabolism as reflected by N level and nitrate reductase. Species-specific responses were recorded and supported by principal component analysis. This study provided insight into the mechanism of AMF's impact on Be-stressed ryegrass and chickpea plants. Hence, the current research suggested that AMF inoculation could be used as a viable strategy to mitigate Be phytotoxicity in ryegrass and chickpea plants.The ubiquitous occurrence of phthalate esters (PAEs) in agricultural soil results in their inevitable accumulation in crops, potentially increasing the risk of human exposure to PAEs via daily food intake. Dietary health risk of PAEs not only depends on locally produced food but also the imported food from other regions. However, the impact of interregional food trade on human dietary exposure to PAEs has been seldom assessed. Herein, we investigated the impact of interregional food trade on the dietary exposure to PAEs that contributed from soil contamination in China. The average daily dietary intake of PAEs for the Chinese general population was 24.3 μg/kg/day when assuming the total consumption of crops from local market only, while the average daily dietary intake of PAEs for the Chinese general population was decreased by 2.9% when the effects of interregional food trade were involved into the calculation. Additionally, the interregional food trade remarkably increased the daily dietary intake of PAEs in the regions of Beijing-Tianjin region (47.8%), North (21.4%) and Central (4.26%). As a result, the hazard quotient value of PAEs in the regions of Beijing-Tianjin region, North and Central increased by 29.4%, 11.0% and 5.0%, respectively, owing to the consumption of imported crops from the highly PAEs contaminated regions. In contrast, the daily intake and hazard quotient value of PAEs in the regions of Central Coast, Northwest, Northeast and South Coast decreased due to the interregional trade. These results indicated that the interregional food trade promoted the transfer of PAEs between regions and thus altered the potential risk to the local population. Overall, this study highlights the importance of taking the interregional food trade into account to provide a more accurate risk assessment of dietary exposure to pollutants.The explosion of microbiome research over the past decade has shed light on the various ways that external factors interact with the human microbiome to drive health and disease. Each individual is exposed to more than 300 environmental chemicals every day. Accumulating evidence indicates that the microbiome is involved in the early response to environmental toxicants and biologically mediates their adverse effects on human health. However, few review articles to date provided a comprehensive framework for research and translation of the role of the gut microbiome in environmental health science. This review summarizes current evidence on environmental compounds and their effect on the gut microbiome, discusses the involved compound metabolic pathways, and covers environmental pollution-induced gut microbiota disorders and their long-term outcomes on host health. We conclude that the gut microbiota may crucially mediate and modify the disease-causing effects of environmental chemicals. Consequently, gut microbiota needs to be further studied to assess the complete toxicity of environmental exposures. Future research in this field is required to delineate the key interactions between intestinal microbiota and environmental pollutants and further to elucidate the long-term human health effects.The environmental pollution caused by toxic chemicals such as pesticides has become a global problem. The mixture of dichlorvos (DIC), dimethoate (DIM), aldicarb (ALD) poses potential risks to the environment and human health. To fully explore the interaction of complex mixtures on Caenorhabditis elegans behavioral toxicity endpoint. This study created a synergistic-antagonistic heatmap (SAHmap) based on the combination index to systematically describe the toxicological interaction prospect of the mixture system. It was shown that the three pesticides and their binary as well as ternary mixture rays have significant concentration-response relationship on three behavioral endpoints of nematodes, From the perspective of synergistic-antagonistic heatmaps, all the mixture rays in the DIC-DIM mixture system showed strong synergism on the three behavioral and lethal endpoints. In the ternary mixture system, the five mixture rays showed different interaction between the behavioral endpoint and the lethal endpoint, and showed slight synergism to two behavioral endpoints as a whole. The emergence of synergism should arouse our attention to these hazardous chemicals. In addition, the use of SAHmap and the significant linear correlation among three behavioral endpoints further improved the efficiency of the study on the behavioral toxicity of pesticide mixtures to Caenorhabditis elegans.Human exposure to bisphenol A (BPA) and bisphenol S (BPS) has garnered considerable global health concerns. In this paper, the daily intake (DI) of BPA and BPS in the general population of Guangzhou, China, were back-calculated using the biomarkers BPA glucuronides (BPA-G) and BPS glucuronides (BPS-G), respectively. The biomarkers are preferable to total BPA and BPS measurements because they are not susceptible to external contamination. A total of 1440 urine samples were gathered from the general population in Guangzhou, China, which were classified by age and sex into 36 pooled urine samples. 100% and 98% of pooled urine samples contained BPA-G and BPS-G at median values of 1.57 and 0.38 ng/mL, respectively. Based on urinary BPA-G and BPS-G concentrations, we determined the median DI of BPA and BPS to be 31.07 and 7.37 ng/(kg bw*d), respectively, and the highest values to be 106.77 ng/(kg bw*d) and 18.19 ng/(kg bw*d), respectively. Furthermore, our results showed that for the entire dataset, the DI of BPA and BPS were considerably greater in males than in females (p less then 0.01)and declined significantly with age (p less then 0.05). For risk assessment, the estimated DIs of BPA and BPS were much lower than the European Food Safety Authority' s (EFSA) the temporary acceptable reference dose of 4 μg/(kg bw*d) advised for BPA, suggesting that the exposure risk of BPA and BPS for Guangzhou population is within a controllable safety range. This is the first study to investigate BPA and BPS exposure in the general population of Guangzhou, China, on the basis of urinary metabolites.Fluoride (F) exposure can cause osteosclerosis, which is characterised by a high bone mass, but its mechanism is not fully illustrated. Here, we aimed to evaluate the effects of excessive F exposure on the bone lesion by treating female Sprague-Dawley rats with different concentrations of sodium fluoride (NaF) (0, 55, 110 and 221 mg/L) for 90 days and the corresponding concentrations of fluorine ion (0, 25, 50 and 100 mg/L, respectively). Histopathological results showed that excessive F exposure caused the enlargement of trabeculae and their integration into one large piece, growth plate thickening, articular cartilage impairment and bone collagen abnormality. Meanwhile, F promoted calcium deposition and bone mineralisation, and induced abnormal osteogenesis increased. The results of micro-computed tomography also confirmed that excessive F destroyed the bone microstructure and induced a high-bone-mass phenotype, consistent with the results of pathomorphology. Mechanistically, excessive amounts of F led to angiogenesis inhibition and HIF-1α signalling enhancement. Subsequently, F induced autophagy and canonical Wnt/β-catenin signalling pathway activation. Collectively, these results manifested that F enhanced the hypoxia inducible factor-1α signalling, which in turn triggered autophagy and canonical Wnt/β-catenin signalling activation, ultimately leading to osteosclerosis in the rats.In recent years, increasing studies have been reported on characterization and detection of microplastics (MPs), and their interactions with organic pollutants (OPs) and heavy metals (HMs) in soils. However, a comprehensive review on the characteristics and factors that influence MPs distribution in soils, the sorption characteristics and mechanisms of soil contaminants by MPs, especially the interactions of MPs and their complexes with pollutants in the soil-plant systems remains rarely available at present. This review focuses on the sorption features and mechanisms of pollutants by MPs in soil and discussed the effects of MPs and their complexing with pollutants on soil properties, microbe and plants. The polarity of MPs significantly influenced the sorption of OPs, and different sorption mechanisms are involved for the hydrophobic and hydrophilic OPs. The sorption of OPs on MPs in soils is different from that in water. Aging of MPs can promote the sorption and migration of contaminants. The enhanced effects of biofilm in microplastisphere on the sorption of pollutants by MPs are critical, and interactions of soil environment-MPs-microbe-HMs-antibiotics increase the potential pathogens and larger release of resistance genes. The coexistence of HMs and MPs affected the growth of plants and the uptake of HMs and MPs by the plants. Moreover, the type, dose, shape and particle size of MPs have important influences on their interactions with pollutants and subsequent effects on soil properties, microbial activities and plant growth. This review also pointed out some knowledge gaps and constructive countermeasures to promote future research in this field.
Read More:
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.