NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

It preferentially utilizes aromatics over glucose and co-metabolizes them with succinate or pyruvate (Basu et al
, 2006, Applied and Environmental Microbiology, 72 : 22226-2230). In the present study, the substrate utilization hierarchy for strain CSV86T was tested for additional simple carbon sources such as glycerol, acetate, and tri-carboxylic acid (TCA) cycle intermediates like α-ketoglutarate and fumarate. When grown on a mixture of aromatics (benzoate or naphthalene) plus glycerol, the strain displayed a diauxic growth profile with significantly high activity of aromatic utilization enzymes (catechol 1,2- or 2,3-dioxygenase, respectively) in the first-log phase. This suggests utilization of aromatics in the first-log phase followed by glycerol in the second-log phase. On a mixture of an aromatic plus organic acid (acetate, α-ketoglutarate or fumarate), the strain displayed a monoauxic growth profile, indicating co-metabolism. Interestingly, the presence of glycerol, acetate, α-ketoglutarate or fumarate does not repress metabolism/utilization of the aromatic.

Thus, the substrate utilization hierarchy of strain CSV86T is aromatics=organic acids>glucose/glycerol, which is unique as compared to other Pseudomonas species, where degradation of aromatics is repressed by glycerol, glucose, acetate or organic acids, including TCA cycle intermediates. This novel substrate utilization hierarchy appears to be a global metabolic phenomenon in strain CSV86T, thus implying it to be an ideal host for metabolic engineering as well as for its potential application in bioremediation.Quantifying aromaticity with electron delocalisation measures.Química, Universitat de Girona, Campus Montilivi, 17071 Girona, Spain. Aromaticity cannot be measured directly by any physical or chemical experiment because it is not a well-defined magnitude. Its quantification is done indirectly from the measure of different properties that are usually found in aromatic compounds such as bond length equalisation, energetic stabilisation, and particular magnetic behaviour associated with induced ring currents. These properties have been used to set up the myriad of structural-, energetic-, and magnetic-based indices of aromaticity known to date.

The cyclic delocalisation of mobile electrons in two or three dimensions is probably one of the key aspects that characterise aromatic compounds. However, it has not been until the last decade that electron delocalisation measures have been widely employed to quantify aromaticity. Some of these new indicators of aromaticity such as the PDI, FLU, ING, and INB were defined in our group. In this paper, we review the different existing descriptors of aromaticity that are based on electron delocalisation properties, we compare their performance with indices based on other properties, and we summarise a number of applications of electronic-based indices for the analysis of aromaticity in interesting chemical problems.Unusually high aromaticity and diatropicity of bond-alternate benzene.Enormous effort has been devoted to the elucidation of possible effects of bond-length alternation on the benzene pi-system. Benzene tends to stay highly aromatic and highly diatropic even if strong bond-length alternation is introduced artificially into the pi-system.

Such peculiar aromatic and magnetic characters of benzene were justified consistently and unambiguously within a single theoretical framework. From all physically sound points of view, bond-alternate benzene is highly aromatic with a large aromatic stabilization energy. We confirmed that in the annulene family benzene is least sensitive in aromaticity to bond-length alternation.Synthetic Lift-off Polymer beneath Layer-by-Layer Films for Surface-Mediated for Research and Technology (SMART), Singapore, Singapore.A broad range of biomaterials coatings and thin film drug delivery systems require a strategy for the immobilization, retention, and release of coatings from surfaces such as patches, inserts, and microneedles under physiological conditions. Here we report a polymer designed to provide a dynamic surface, one that first functions as a platform for electrostatic thin film assembly and releases the film once in an in vivo environment. 6-butyl-n-hydroxynaphthimide trifluoromethanesulfonic acid in Electrophilic Aromatic Substitution (ATRP) was used to synthesize this polymer poly(o-nitrobenzyl-methacrylate-co-hydroxyethyl-methacrylate-co-poly(ethylene-glycol)-methacrylate) (PNHP), embedded beneath multilayered polyelectrolyte films.

Such a base layer is designed to photochemically pattern negative charge onto a solid substrate, assist deposition of smooth layer-by-layer (LbL) polyelectrolyte in mildly acidic buffers and rapidly dissolve at physiological pH, thus lifting off the LbL films. To explore potential uses in the biomedical field, a lysozyme (Lys)/poly(acrylic acid) (PAA) multilayer film was developed on PNHP-coated silicon wafers to construct prototype antimicrobial shunts. Film thickness was shown to grow exponentially with increasing deposition cycles, and effective drug loading and in vitro release was confirmed by the dose-dependent inhibition of Escherichia coli (E. coli) growth. 6-butyl-n-hydroxynaphthimide trifluoromethanesulfonic acid as a Catalyst in Organic Transformations of this approach is further demonstrated in LbL-coated microscale needle arrays ultimately of interest for vaccine applications.
My Website: https://www.metooo.io/u/659b9988bce0001d7850e4db
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.