Notes
![]() ![]() Notes - notes.io |
Oxygen evolution reaction (OER) and urea oxidation reaction (UOR) play important roles in the fields of hydrogen energy production and pollution treatment. Herein, a facile one-step chemical etching strategy is provided for fabricating one-dimensional hierarchical nanorods array composed of CoFe layered double hydroxide (LDH)/metal-organic frameworks (MOFs) supported on carbon cloth as efficient and stable OER and UOR catalysts. By precisely controlling the etching rate, the ligands from Co-MOFs are partially removed, the corresponding metal centers then coordinate with hydroxyl ions to generate ultrathin amorphous CoFe LDH nanosheets. The resultant CoFe LDH/MOFs catalyst possesses large active surface area, enhanced conductivity and extended electron/mass transfer channels, which are beneficial for catalytic reactions. Additionally, the intimate contact between CoFe LDH and MOFs modulates the local electronic structure of the catalytic active site, leading to enhanced adsorption of oxygen-containing intermediates to facilitate fast electrocatalytic reaction. As a result, the optimized CoFe LDH/MOF-0.06 exhibits superior OER activity with a low overpotential of 276 at a current density of 10 mA cm-2with long-term durability. Additionally, it merely requires a voltage of 1.45 V to obtain 10 mA cm-2in 1 M KOH solution with 0.33 urea and is 56 mV lower than the one in pure KOH. The work presented here may hew out a brand-new route to construct multi-functional electrocatalysts for water splitting, CO2reduction, nitrogen reduction reactions and so on.Objective.The speed of visual brain-computer interfaces (v-BCIs) has been greatly improved in recent years. OD36 purchase However, the traditional v-BCI paradigms require users to directly gaze at the intensive flickering items, which would cause severe problems such as visual fatigue and excessive visual resource consumption in practical applications. Therefore, it is imperative to develop a user-friendly v-BCI.Approach.According to the retina-cortical relationship, this study developed a novel BCI paradigm to detect the fixation point of eyes using a small visual stimulus that subtended only 0.6° in visual angle and was out of the central visual field. Specifically, the visual stimulus was treated as a landmark to judge the eccentricity and polar angle of the fixation point. Sixteen different fixation points were selected around the visual landmark, i.e. different combinations of two eccentricities (2° and 4°) and eight polar angles (0,π4,π2,3π4,π,5π4,3π2and7π4). Twelve subjects participated in this study, and they were asked to gaze at one out of the 16 points for each trial. A multi-class discriminative canonical pattern matching (Multi-DCPM) algorithm was proposed to decode the user's fixation point.Main results.We found the visual stimulation landmark elicited different spatial event-related potential patterns for different fixation points. Multi-DCPM could achieve an average accuracy of 66.2% with a standard deviation of 15.8% for the classification of the sixteen fixation points, which was significantly higher than traditional algorithms (p⩽0.001). Experimental results of this study demonstrate the feasibility of using a small visual stimulus as a landmark to track the relative position of the fixation point.Significance.The proposed new paradigm provides a potential approach to alleviate the problem of irritating stimuli in v-BCIs, which can broaden the applications of BCIs.Movement intention detection using electroencephalography (EEG) is a challenging but essential component of brain-computer interfaces (BCIs) for people with motor disabilities.Objective.The goal of this study is to develop a new experimental paradigm to perform asynchronous online detection of movement based on low-frequency time-domain EEG features, concretely on movement-related cortical potentials. The paradigm must be easily transferable to people without any residual upper-limb movement function and the BCI must be independent of upper-limb movement onset measurements and external cues.Approach. In a study with non-disabled participants, we evaluated a novel BCI paradigm to detect self-initiated reach-and-grasp movements. Two experimental conditions were involved. In one condition, participants performed reach-and-grasp movements to a target and simultaneously shifted their gaze towards it. In a control condition, participants solely shifted their gaze towards the target (oculomotor task). The participanand-grasp movements, which also constitutes an advantage with respect to current BCI protocols.Tissue reconstruction requires the utilization of multiple biomaterials and cell types to replicate the delicate and complex structure of native tissues. Various three-dimensional (3D) bioprinting techniques have been developed to fabricate customized tissue structures; however, there are still significant challenges, such as vascularization, mechanical stability of printed constructs, and fabrication of gradient structures to be addressed for the creation of biomimetic and complex tissue constructs. One approach to address these challenges is to develop multimaterial 3D bioprinting techniques that can integrate various types of biomaterials and bioprinting capabilities towards the fabrication of more complex structures. Notable examples include multi-nozzle, coaxial, and microfluidics-assisted multimaterial 3D bioprinting techniques. More advanced multimaterial 3D printing techniques are emerging, and new areas in this niche technology are rapidly evolving. In this review, we briefly introduce the basics of individual 3D bioprinting techniques and then discuss the multimaterial 3D printing techniques that can be developed based on combination of these techniques for the engineering of complex and biomimetic tissue constructs. We also discuss the perspectives and future directions to develop state-of-the-art multimaterial 3D bioprinting techniques for engineering tissues and organs.Purpose.To develop a framework to include oxygenation effects in radiation therapy treatment planning which is valid for all modalities, energy spectra and oxygen levels. The framework is based on predicting the difference in DNA-damage resulting from ionising radiation at variable oxygenation levels.Methods.Oxygen fixation is treated as a statistical process in a simplified model of complex and simple damage. We show that a linear transformation of the microscopic oxygen fixation process allows to extend this to all energies and modalities, resulting in a relatively simple rational polynomial expression. The model is expanded such that it can be applied for polyenergetic beams. The methodology is validated using Microdosimetric Monte Carlo Damage Simulation code (MCDS). This serves as a bootstrap to determine relevant parameters in the analytical expression, as MCDS is shown to be extensively verified with published empirical data. Double-strand break induction as calculated by this methodology is compared to published proton experiments.
Here's my website: https://www.selleckchem.com/products/od36.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team