Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Characterisation of vegetal colourants in manuscripts is still a challenging task. Their identification using non-invasive techniques - since sampling is rarely possible - is valid only if there is evidence that the recorded signals are generated by compounds specific to the plant species. Otherwise, more extensive chemical characterisations are required to relate the non-invasive technique signals to the chemical composition of the dye extract and thus avoid misidentification. The case study of a traditional Mesoamerican dye found in the Codex Borbonicus is reported herein. The non-invasive identification of the colourant plant source and chemical characterisation of the coloured molecules were carried out through a multi-analytical technique approach. In situ Raman and UV-Vis emission fluorescence signals suggested the use of Justicia spicigera leaves to produce the brown paint layers of the manuscript. Analysis of the plant extract by liquid chromatography revealed that two compounds are mostly responsible for the colour, and these compounds were successfully isolated. Both contribute to the Raman spectra while only one of them is mainly responsible for the fluorescence recorded on Codex Borbonicus.Purification of bacteria from human blood samples is essential for rapid identification of pathogens by molecular methods, enabling faster and more accurate diagnosis of bloodstream infection than conventional gold standard blood culture methods. The inertial microfluidic method has been broadly studied to isolate biological cells of interest in various biomedical applications due to its label-free and high-throughput advantages. check details However, because of the bacteria's tininess, which ranges from 0.5 μm to 3 μm, they are challenging to be effectively focused and sorted out in existing inertial microfluidic devices that work well with biological cells larger than 10 μm. Efforts have been made to sort bacterial cells by utilizing extremely small channel dimensions or employing a sheath flow, which thus results in limitations on the throughput and ease of operation. To overcome this challenge, we develop a method that integrates a non-Newtonian fluid with a novel channel design to allow bacteria to be successfully sorted from larger blood cells in a channel dimension of 120 μm × 20 μm without the use of sheath flows. The throughput of this device with four parallel channels is above 400 μL per minute. The real-time polymerase chain reaction (qPCR) analysis indicates that our inertial sorting approach has a nearly 3-fold improvement in pathogen recovery compared with the commonly used lysis-centrifugation method at pathogen abundances as low as 102 cfu mL-1. With the rapid and simple purification and enrichment of bacterial pathogens, the present inertial sorting method exhibits an ability to enhance the fast and accurate molecular diagnosis of bloodstream bacterial infection.All cells produce extracellular vesicles (EVs). These biological packages contain complex mixtures of molecular cargo and have a variety of functions, including interkingdom communication. Recent discoveries highlight the roles microbial EVs may play in the environment with respect to interactions with plants as well as nutrient cycling. These studies have also identified molecules present within EVs and associated with EV surfaces that contribute to these functions. In parallel, studies of engineered nanomaterials have developed methods to track and model small particle behavior in complex systems and measure the relative importance of various surface features on transport and function. While studies of EV behavior in complex environmental conditions have not yet employed transdisciplinary approaches, it is increasingly clear that expertise from disparate fields will be critical to understand the role of EVs in these systems. Here, we outline how the convergence of biology, soil geochemistry, and colloid science can both develop and address questions surrounding the basic principles governing EV-mediated interkingdom interactions.The development of accelerated methods for pathogen identification (ID) and antimicrobial susceptibility testing (AST) for infectious diseases is necessary to facilitate evidence-based antibiotic therapy and reduce clinical overreliance on broad-spectrum antibiotics. Towards this end, droplet-based microfluidics has unlocked remarkably rapid diagnostic assays with single-cell and single-molecule resolution. Yet, droplet platforms invariably rely on testing purified bacterial samples that have been clinically isolated after lengthy (>16 h) plating. While plating-based clinical isolation is important for enriching and separating out bacteria from background in clinical samples and also facilitating buffer exchange, it creates a diagnostic bottleneck that ultimately precludes droplet-based methods from achieving significantly accelerated times-to-result. To alleviate this bottleneck, we have developed facile syringe filter-enabled strategies for bacterial separation, enrichment, and buffer exchange from urine samples. By selecting appropriately sized filter membranes, we separated bacterial cells from background particulates in urine samples and achieved up to 91% bacterial recovery after such 1-step filtration. When interfaced with droplet-based detection of bacterial cells, 1-step filtration improved the limit of detection for bacterial ID and quantification by over an order of magnitude. We also developed a facile buffer exchange strategy to prepare bacteria in urine samples for droplet-based AST that achieved up to 10-fold bacterial enrichment during buffer exchange. Our filtration strategies, can be easily integrated into droplet workflows, enable clinical isolation-free sample-to-answer ID and AST, and significantly accelerate the turnaround of standard infectious disease diagnostic workflows.The use of nanomaterials (NMs) in various applications via multidisciplinary approaches is highly necessary in this era. In this line, the impact of noble metals in organic media for both catalysis and surface-enhanced Raman spectroscopic (SERS) studies is most interesting and also has a wider scope in various fields. Nonetheless, the catalytic reduction of aromatic nitro compounds is difficult with poor solubility in aqueous media, and reduction also is less feasible in the absence of noble metal-based catalysts. Thus, the choice of noble metal-based catalysts for the catalytic reduction of nitro compounds in organic media is one of the emerging methods with high selectivity towards products. Moreover, the superior catalytic activity of Pt NPs provides a higher rate constant value with a low dielectric constant of organic solvents. Herein, for the first time, we synthesised highly stable metallic Pt nanoparticles (NPs) anchored on bio-scaffold deoxyribonucleic acid (DNA) for two different applications. The advantage of highly controlled nucleation of NPs over DNA in organic media results in a spherical morphology with a particle diameter of 2.
Website: https://www.selleckchem.com/products/PD-98059.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team