Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Thermal conductivity of a model glass-forming system in the liquid and glass states is studied using extensive numerical simulations. We show that near the glass transition temperature, where the structural relaxation time becomes very long, the measured thermal conductivity decreases with increasing age. Second, the thermal conductivity of the disordered solid obtained at low temperatures is found to depend on the cooling rate with which it was prepared. For the cooling rates accessible in simulations, lower cooling rates lead to lower thermal conductivity. Our analysis links this decrease of the thermal conductivity with increased exploration of lower-energy inherent structures of the underlying potential energy landscape. Further, we show that the lowering of conductivity for lower-energy inherent structures is related to the high-frequency harmonic modes associated with the inherent structure being less extended. Possible effects of considering relatively small systems and fast cooling rates in the simulations are discussed.We obtain explicit expressions for the annealed complexities associated, respectively, with the total number of (i) stationary points and (ii) local minima of the energy landscape for an elastic manifold with internal dimension d less then 4 embedded in a random medium of dimension N≫1 and confined by a parabolic potential with the curvature parameter μ. These complexities are found to both vanish at the critical value μ_c identified as the Larkin mass. For μ less then μ_c the system is in complex phase corresponding to the replica symmetry breaking in its T=0 thermodynamics. The complexities vanish, respectively, quadratically (stationary points) and cubically (minima) at μ_c^-. For d≥1 they admit a finite "massless" limit μ=0 which is used to provide an upper bound for the depinning threshold under an applied force.Various functions of a network of excitable units can be enhanced if the network is in the "critical regime," where excitations are, on average, neither damped nor amplified. An important question is how can such networks self-organize to operate in the critical regime. Previously, it was shown that regulation via resource transport on a secondary network can robustly maintain the primary network dynamics in a balanced state where activity doesn't grow or decay. Here we show that this internetwork regulation process robustly produces a power-law distribution of activity avalanches, as observed in experiments, over ranges of model parameters spanning orders of magnitude. We also show that the resource transport over the secondary network protects the system against the destabilizing effect of local variations in parameters and heterogeneity in network structure. For homogeneous networks, we derive a reduced three-dimensional map which reproduces the behavior of the full system.Digital rock imaging plays an important role in studying the microstructure and macroscopic properties of rocks, where microcomputed tomography (MCT) is widely used. Due to the inherent limitations of MCT, a balance should be made between the field of view (FOV) and resolution of rock MCT images-a large FOV at low resolution (LR) or a small FOV at high resolution (HR). However, large FOV and HR are both expected for reliable analysis results in practice. Super-resolution (SR) is an effective solution to break through the mutual restriction between the FOV and resolution of rock MCT images, for it can reconstruct an HR image from a LR observation. Most of the existing SR methods cannot produce satisfactory HR results on real-world rock MCT images. One of the main reasons for this is that paired images are usually needed to learn the relationship between LR and HR rock images. However, it is challenging to collect such a dataset in a real scenario. Meanwhile, the simulated datasets may be unable to accurately rHR rock MCT images can be obtained with the help of SRCycleGAN. Hence, this work makes it possible to generate HR rock MCT images that exceed the limitations of imaging systems on FOV and resolution.The generalized Schrödinger-Newton system of equations with both local and nonlocal nonlinearities is widely used to describe light propagating in nonlinear media under the paraxial approximation. However, its use is not limited to optical systems and can be found to describe a plethora of different physical phenomena, for example, dark matter or alternative theories for gravity. Thus, the numerical solvers developed for studying light propagating under this model can be adapted to address these other phenomena. Indeed, in this work we report the development of a solver for the HiLight simulations platform based on GPGPU supercomputing and the required adaptations for this solver to be used to test the impact of new extensions of the Theory of General Relativity in the dynamics of the systems. In this work we shall analyze theories with nonminimal coupling between curvature and matter. check details This approach in the study of these new models offers a quick way to validate them since their analytical analysis is difficult. The simulation module, its performance, and some preliminary tests are presented in this paper.Magnesium (Mg^2+) and calcium (Ca^2+) are of essential importance in biological activity, but the molecular understanding of their selectivity is still lacking. Here, based on density functional theory calculations and ab initio molecular dynamics simulations, we show that Mg^2+ binds more tightly to phosphotyrosine (pTyr) and stabilizes the conformation of pTyr, while Ca^2+ binds more flexibly to pTyr with less structural stability. The key for the selectivity is attributed to the cation-π interactions between the hydrated cations and the aromatic ring together with the synergic interaction between the cations and the side groups in pTyr to form a cation-binding pocket structure, which we refer as side-group-synergetic hydrated cation-π interaction. The existence and relative strength of the cation-π interactions in the pocket structures as well as their structural stability have been demonstrated experimentally with ultraviolet (UV) absorption spectra and ^1H NMR spectra. The findings offer insight into understanding the selectivity of Mg^2+ and Ca^2+ in a variety of biochemical and physiological essential processes.
Homepage: https://www.selleckchem.com/products/h3b-120.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team