Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Despite the increased number of cells incubated with ALP-immobilized scaffolds (up to 61% for non-mineralized and up to 36% for mineralized), the CaCO3-mineralized PHB scaffolds showed cell adhesion; those containing both VCM and ALP molecules had the highest cell density. Importantly, no toxicity for pre-osteoblastic cells was detected, even in the VCM-immobilized scaffolds. In contrast with antibiotic-free scaffolds, the VCM-immobilized ones had a pronounced antibacterial effect against gram-positive bacteria Staphylococcus aureus. Thus, piezoelectric hybrid PHB scaffolds modified with CaCO3 layers and immobilized VCM/ALP are promising materials in bone tissue engineering.The low power photothermal therapy can reduce the tissue damage caused by laser irradiation, thus the near-infrared (NIR) absorbing vehicles with high photothermal conversion efficiency are demanded in the low power treatment. see more Herein, the NIR-absorbing agent polydopamine (PDA) and carbon dots (CDs) were gated on the openings of hollow mesoporous carbon (HMC) to construct a photothermal enhanced multi-functional system (HMC-SS-PDA@CDs). Interestingly, the fluorescence emission wavelength of HMC-SS-PDA@CDs was red-shifted by FRET effect between PDA and CDs, which solved the dilemma of fluorescence quenching of carbon-based materials and was more conducive to cell imaging. The modification of PDA@CDs not only acts as the gatekeepers to realize multi-responsive release of pH, GSH and NIR, but also endows the HMC vehicle with excellent photothermal generation capacity, the possibility for bio-imaging as well as the enhanced stability. Naturally, both the cytological level and the multicellular tumor sphere level demonstrate that the delivery system has good low-power synergistic therapeutic with combination index (CI) of 0.348 and imaging effects. Meanwhile, the combined treatment group showed the highest tumor inhibition rate of 92.6% at 0.75 W/cm2. Therefore, DOX/HMC-SS-PDA@CDs nano-platform had broad application prospects in low power therapy and convenient imaging of carbon-based materials.In order to prevent thrombosis, reduce intima hyperplasia, and to maintain long-term patency after implantation of an artificial blood vessel, the formation of intact endothelial cells layer on an inner surface of graft is desirable. The present study aimed to improve endothelial cell adhesion by regulating the morphology of the inner surface of artificial blood vessels. Zein fibre membranes with three fibre diameters (small, ~100 nm; medium, ~500 nm; and large, ~1000 nm) were constructed by electrospinning. A flow chamber device was designed to simulate the blood flow environment. The morphology and adhesion of human umbilical vein fusion cells (EA.hy926) on the surface of the fibre membranes were studied under a shear stress of approximately 15 dynes/cm2. The results showed that oriented electrospun zein fibre surfaces with both medium- and large-diameter fibres can regulate the morphology of endothelial cells (EA.hy926), which are aligned by the fibre direction. The three fibre membranes improved the adhesion of endothelial cells significantly compared to that on the flat membrane. When the fibre direction was fixed parallel to the fluid direction, the medium-diameter oriented-fibre membrane could significantly improve the ability endothelial cells to resist shear stress, and there was a significant difference at 1, 2 and 4 h time points compared with the shear stress resistance on the small-diameter and large-diameter oriented-fibre membranes. When the fibre direction was perpendicular to the fluid direction, again the medium-diameter oriented-fibre membrane improved the ability of endothelial cells to resist shear stress significantly at 1 and 2 h time points. It was concluded that by changing the diameter and arrangement of electrospun fibres, cell morphology control and shear stress resistance can be achieved.The high rates of aggressiveness, drug resistance and relapse of breast cancer (BC) are mainly attributed to the inability of conventional therapies to equally eradicate bulk differentiated cells and cancer stem cells (CSCs). To improve the effectiveness of BC treatments, we report the in-water synthesis of novel keratin-based nanoformulations, loaded with the CSC-specific drug salinomycin (SAL), the photosensitizer chlorin e6 (Ce6) and vitamin E acetate (SAL/Ce6@kVEs), which combine the capability of releasing SAL with the production of singlet oxygen upon light irradiation. In vitro experiments on BC cell lines and CSC-enriched mammospheres exposed to single or combined therapies showed that SAL/Ce6@kVEs determine synergistic cell killing, limit their self-renewal capacity and decrease the stemness potential by eradication of CSCs. In vivo experiments on zebrafish embryos confirmed the capacity of SAL nanoformulations to interfere with the Wnt/β-catenin signaling pathway, which is dysregulated in BC, thus identifying a target for further translation into pre-clinical models.This research, for the first time, report the synthesis of core-shell magnetic nanoparticles (NPs) consisting poly acrylic acid (PAA) coated cobalt ferrite (CF) using a simple co-precipitation route. Nanocrystalline PAA@CF-NPs, particle size of 9.2 nm, exhibited saturation magnetization as 28.9 emu/g, remnant magnetization as 8.37 emu/g, and coercivity as 543 Oe. Keeping biomedical applications into consideration, PAA@CF-NPs were further analysed to evaluate antimicrobial performance against Gram positive (Staphylococcus aureus and Bacillus subtilis) and Gram negative (Pseudomonas aeruginosa and Escherichia coli) bacteria, and biocompatibility with reference to activated splenic cells. The PAA@CF-NPs were viable to the normal splenic cells (up to 1000 μg/ml) and do not affect the ability of fast dividing ability of the cells (activated splenic cells). An optimized dose of PAA@CF-NPs was intramuscularly administrated (100 μg/ml) into Albino mice to evaluate acute toxicity. The results of these studies suggest that injected PAA@CF-NPs do not affect vital organs mainly including liver and kidneys that confirmed the heptic/renal biocompatibility. The outcomes of this research project such developed nano-system for biomedical applications, mainly for magnetically guided drug delivery and image guided therapies development. However, to support the proposed claims, extended in-vivo studies are required to explore bio-distribution, chronic toxicity, and homeostatic conditions.
Here's my website: https://www.selleckchem.com/products/gsk2578215a.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team