Notes
![]() ![]() Notes - notes.io |
7 ± 0.1 × 10-13 m2 s-1.An efficient representation of molecular correlated wave functions is proposed, which features regularization of the Coulomb electron-electron singularities via the F12-style explicit correlation and a pair-natural orbital factorization of the correlation components of the wave function expressed in the real space. The pair-natural orbitals are expressed in an adaptive multiresolution basis and computed directly by iterative variational optimization. The approach is demonstrated by computing the second-order Moller-Plesset energies of small- and medium-sized molecules. The resulting MRA-PNO-MP2-F12 method allows for the first time to compute correlated wave functions in a real-space representation for systems with dozens of atoms (as demonstrated here by computations on alkanes as large as C10H22), with precision exceeding what is achievable with the conventional explicitly correlated MP2 approaches based on the atomic orbital representations.The spectroscopic detection of molecules adsorbed onto ice surfaces at coverages similar to those encountered under typical environmental conditions requires high surface selectivity and sensitivity that few techniques can afford. An experimental methodology allowing a significant enhancement in the absorbance from adsorbed molecules is demonstrated herein. It exploits Electric Field Standing Wave (EFSW) effects intrinsic to grazing incidence Reflection-Absorption Infrared (RAIR) spectroscopy, where film thickness dependent optical interferences occur between the multiple reflections of the IR beam at the film-vacuum and the substrate-film interfaces. In this case study, CH4 is used as a probe molecule and is deposited on a 20 ML coverage dense amorphous solid water film adsorbed onto solid Ar underlayers of various thicknesses. We observe that, at thicknesses where destructive interferences coincide with the absorption features from the CH stretching and HCH bending vibrational modes of methane, their intensity increases by a factor ranging from 10 to 25. Simulations of the RAIR spectra of the composite stratified films using a classical optics model reproduce the Ar underlayer coverage dependent enhancements of the absorbance features from CH4 adsorbed onto the ice surface. They also reveal that the enhancements occur when the square modulus of the total electric field at the film's surface reaches its minimum value. Exploiting the EFSW effect allows the limit of detection to be reduced to a coverage of (0.2 ± 0.2) ML CH4, which opens up interesting perspectives for spectroscopic studies of heterogeneous atmospheric chemistry at coverages that are more representative of those found in the natural environment.Accurate prediction of intermolecular interaction energies is a fundamental challenge in electronic structure theory due to their subtle character and small magnitudes relative to total molecular energies. Symmetry adapted perturbation theory (SAPT) provides rigorous quantum mechanical means for computing such quantities directly and accurately, but for a computational cost of at least O(N5), where N is the number of atoms. Here, we report machine learned models of SAPT components with a computational cost that scales asymptotically linearly, O(N). We use modified multi-target Behler-Parrinello neural networks and specialized intermolecular symmetry functions to address the idiosyncrasies of the intermolecular problem, achieving 1.2 kcal mol-1 mean absolute errors on a test set of hydrogen bound complexes including structural data extracted from the Cambridge Structural Database and Protein Data Bank, spanning an interaction energy range of 20 kcal mol-1. Additionally, we recover accurate predictions of the physically meaningful SAPT component energies, of which dispersion and induction/polarization were the easiest to predict and electrostatics and exchange-repulsion are the most difficult.Two-dimensional van der Waals heterostructures (vdWHs) with tunable band alignment can be very useful for developing minimized multifunctional and controllable devices, but so far they are scarcely reported. Here, using first-principles calculations, we systematically investigate the electronic properties of Tl2O/WTe2 vdWH. Our results indicate that it is a direct bandgap semiconductor harboring a straddling type-I band alignment, with the conduction band minimum (CBM) and valence band maximum (VBM) both from two-dimensional WTe2. AT13387 Interestingly, upon introducing feasible external strain or electric field, its band alignment can be easily transformed into staggered type-II, with CBM and VBM separated in different layers, achieving the long-sought tunable multiple band alignments. Along with this, the intriguing direct-to-indirect bandgap transition is also achieved in Tl2O/WTe2 vdWH. Our work thus provides a promising candidate in the field of two-dimensional multifunctional and controllable electronics.Nonlinear mechanics of soft materials such as polymer melts or polymer solutions are frequently investigated by Large Amplitude Oscillatory Shear (LAOS) spectroscopy tests. Less work has been reported on the characterization of the nonlinear viscoelastic properties of glassy polymers within a similar framework. In the present work, we use an extension of LAOS, i.e., mechanical spectral hole burning (MSHB), to investigate the nonlinear dynamics of an amorphous polymer in the deep glassy state. MSHB was developed as an analog to non-resonant spectral hole burning developed by Schiener et al. [Science 274(5288), 752-754 (1996)], who attributed the presence of holes to dynamic heterogeneity. On the other hand, Qin et al. [J. Polym. Sci., Part B Polym. Phys. 47(20), 2047-2062 (2009)] in work on polymer solutions of tailored heterogeneity have attributed the presence of holes to the type of dynamics (Rouse, rubbery, etc.) rather than to a specific spatial heterogeneity. Here, we have performed MSHB experiments on poly(methyl methacrylate) in the deep glassy state (at ambient temperature, which is near to the β-relaxation) to investigate the presence and origin of holes, if any. The effects of pump frequency and pump amplitude were investigated, and we find that vertical holes could be burned successfully for frequencies from 0.0098 Hz to 0.0728 Hz and for pump amplitudes from 2% to 9% strain. On the other hand, horizontal holes were incomplete at high pump amplitude and low frequency, where higher spectral modification is observed. The results are interpreted as being related to the dynamic heterogeneity corresponding to the β-relaxation rather than to the hysteresis energy absorbed in the large deformation pump.
Homepage: https://www.selleckchem.com/products/at13387.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team