Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Glucose potently enhances cognitive functions whether given systemically or directly to the brain. The present experiments examined changes in brain extracellular glucose levels while rats were trained to solve hippocampus-sensitive place or striatum-sensitive response learning tasks for food or water reward. find more Because there were no task-related differences in glucose responses, the glucose results were pooled across tasks to form combined trained groups. During the first 1-3 min of training for food reward, glucose levels in extracellular fluid (ECF) declined significantly in the hippocampus and striatum; the declines were not seen in untrained, rewarded rats. When trained for water reward, similar decreases were observed in both brain areas, but these findings were less consistent than those seen with food rewards. After the initial declines in ECF glucose levels, glucose increased in most groups, approaching asymptotic levels ∼15-30 min into training. Compared to untrained food controls, training with food reward resulted in significant glucose increases in the hippocampus but not striatum; striatal glucose levels exhibited large increases to food intake in both trained and untrained groups. In rats trained to find water, glucose levels increased significantly above the values seen in untrained rats in both hippocampus and striatum. The decreases in glucose early in training might reflect an increase in brain glucose consumption, perhaps triggering increased brain uptake of glucose from blood, as evident in the increases in glucose later in training. The increased brain uptake of glucose may provide additional neuronal metabolic substrate for metabolism or provide astrocytic substrate for production of glycogen and lactate.Autism spectrum disorder (ASD) is a neurodevelopmental disorder that can be caused by various factors. The present study aimed to determine whether prenatal hypoxia can lead to ASD and the role of hypoxia-inducible factor-1α (HIF-1α) in this process. We constructed a prenatal hypoxia model of pregnant rats by piping nitrogen and oxygen mixed gas, with an oxygen concentration of 10 ± 0.5 %, into the self-made hypoxia chamber. Rats were subjected to different extents of hypoxia treatments at different points during pregnancy. The results showed that hypoxia for 6 h on the 17th gestation day is most likely to lead to autistic behavior in offspring rats, including social deficits, repetitive behaviors, and impaired learning and memory. The mRNA expression level of TNF-α also increased in hypoxia-induced autism group and valproic acid (VPA) group. Western blotting analysis showed increased levels of hypoxia inducible factor 1 alpha (HIF-1α) and decreased levels of phosphatase and tensin homolog (PTEN) in the hypoxic-induced autism group. Meanwhile, N-methyl d-aspartate receptor subtype 2 (NR2A) and glutamate ionotropic receptor AMPA type subunit 2 (GluR2) were upregulated in the hypoxic-induced autism group. HIF-1α might play a role in hypoxia-caused autism-like behavior and its regulatory effect is likely to be achieved by regulating synaptic plasticity.
To explore whether the whole brain resting-state functional connectivity (rs-FC) could predict episodic memory performance in individuals with subjective cognitive decline and amnestic mild cognitive impairment.
This study included 33 cognitive normal (CN), 26 subjective cognitive decline (SCD) and 27 amnestic mild cognitive impairment (aMCI) patients, and all the participants completed resting-state fMRI (rs-fMRI) scan and neuropsychological scale test data. Connectome-based predictive modeling (CPM) based on the rs-FC data was used to predict the auditory verbal learning test-delayed recall (AVLT-DR) scores, which measured episodic memory in individuals. Pearson correlation between each brain connection in the connectivity matrices and AVLT-DR scores was computed across the patients in predementia stages of Alzheimer's disease (AD). The Pearson correlation coefficient values separated into a positive network and a negative network. Predictive networks were then defined and employed by calculating positiel.White matter abnormalities in schizophrenic patients are characterized as regional tract-specific. Myelin loss at the genu of the corpus callosum (GCC) is one of the most consistent findings in schizophrenic patients across the different populations. We characterized the axons that pass through the GCC by stereotactically injecting an anterograde axonal tracing viral vector into the forceps minor of the corpus callosum in one hemisphere, and identified the homotopic brain structures that have commissural connections in the two hemispheres of the prefrontal cortex, including the anterior cingulate area, the prelimbic area, the secondary motor area, and the dorsal part of the agranular insular area, along with commissural connections with the primary motor area, caudoputamen, and claustrum. To investigate whether dysmyelination in these commissural connections is critical for the development of schizophrenia symptoms, we generated a mouse model with focal demyelination at the GCC by stereotactically injecting demyelinating agent lysolecithin into this site, and tested these mice in a battery of behavioral tasks that are used to model the schizophrenia-like symptom domains. We found that demyelination at the GCC influenced neither the social interest or mood state, nor the locomotive activity or motor coordination. Nevertheless, it specifically reduced the prepulse inhibition of acoustic startle that is a well-known measure of sensorimotor gating. This study advances our understanding of the pathophysiological contributions of the GCC-specific white matter lesion to the related disease, and demonstrates an indispensable role of interhemispheric communication between the frontal cortices for the top-down regulation of the sensorimotor gating.The ability of glutamatergic synaptic strength to change in response to prevailing neuronal activity is believed to underlie the capacity of animals, including humans, to learn from experience. This learning better equips animals to safely navigate challenging and potentially harmful environments, while reinforcing behaviours that are conducive to survival. Early descriptions of the influence of experience on behaviour were provided by Donald Hebb who showed that an enriched environment improved performance of rats in a variety of behavioural tasks, challenging the widely-held view at the time that psychological development and intelligence were largely predetermined through genetic inheritance. Subsequent studies in a variety of species provided detailed cellular and molecular insights into the neurobiological adaptations associated with enrichment and its counterparts, isolation and deprivation. Here we review those experience-dependent changes that occur at the glutamatergic synapse, and which likely underlie the enhanced cognition associated with enrichment.
Here's my website: https://www.selleckchem.com/products/pf-8380.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team