Notes
![]() ![]() Notes - notes.io |
Forest fires and post-fire practices influence the hydrological response of the soil in terms of runoff and sediment connectivity (SC). In this study, the ability of four indices (IC-Borselli, IC-Cavalli, IC-Persichillo and aggregated index of connectivity (AIC)) to assess SC was evaluated in three Mediterranean headwater sub-catchments (66, 143 and 194 ha) affected by an arson fire in 2012. Three temporal scenarios (before the fire, one year after the fire and two years after the fire including post-fire practices (salvage logging, skid trails and check dams)) and two computation targets (streams hillslope-channel SC; and check-dams hillslope-outlet SC) were considered, obtaining 66 maps of SC at fine spatial resolution (2 m of cell size). Burn severity classes were estimated using Landsat-7 imagery and the dNBR index. The indices' output analysis included geomorphic (landscape units), mathematic (significance, percentiles and frequency distribution), fire (burn severity classes and unburnt areas) and sedimentological (measured specific sediment yield - SSY) criteria. The IC-Borselli and AIC were the most responsive approaches to the effects of fire on SC at catchment scale, whereas the IC-Persichillo was the most sensitive index to the increasing burn severities. The overlay between the fire severities and the geomorphic features appeared as a key aspect to understand the hydrological response at both the stream-system and outlet targets. We found a good and positive agreement between the measured SSY in the three check-dams and the changes in the estimated SCOUTLET due to the fire, especially with the IC-Borselli and AIC. For a better implementation of post-fire programs, we recommend SCOUTLET maps -from AIC- to assess sediment transport in streams, which is dominated by the deposition process, and SCSTREAM maps -from IC-Borselli and AIC- to place sediment control measures at hillslopes for intense rainfall events when effective sediment transport happens.This study aimed to investigate the effects of nitrate on the ultraviolet (UV) treatment of simulated washing wastes containing Trion X-100 (TX-100) surfactant and 4,4'-dibromodiphenyl ether (BDE-15) pollutant. The presence of nitrate accelerated the photodegradation of BDE-15 and TX-100, because they reacted with reactive oxygen species (ROS) produced from conversion between nitrate and nitrite. Due to nitrite having a stronger radical quenching property than nitrate, nitrite hindered TX-100 decay while the photodegradation rate of BDE-15 was similar to that in the presence of nitrate. This indicated that nitrate/nitrite affected BDE-15 photodegradation by photosensitization and TX-100 loss by ROS attack. An increased TX-100 concentration increased the loss of total inorganic nitrogen possibly owing to an increase in organic nitrogen formation through TX-100 nitration reactions. At pH less then 7 HOONO rapidly isomerized to NO3-, and at pH = 7-9 it homolyzed to ONOO-, which increased OH production to decay the BDE-15 and TX-100 and also increased NO2- formation. BDE-15 mainly underwent debromination, and some rearrangement, ring formation, nitration and hydroxylation products were detected, indicating that the produced OH and NO2 attacked the BDE-15 and products. Furthermore, broken-chain, carboxylation, hydroxylation and nitro products were detected by Liquid chromatography high resolution mass spectrometry (LC-HRMS). Escherichia coli was used to assess the toxicity of washing waste containing nitrate the presence of nitrate will increase the wastes' toxicity during UV treatment. Therefore, the presence of nitrate is deleterious to the UV treatment of washing wastes, and it is important to remove nitrates and nitrites from washing waste before UV irradiation.The increase in volume in bio-waste is inseparable from the production of biomass derived commodities. To reduce the use of conventional resources, the valorization of waste streams is gaining importance, and the valorisation of poultry litter fits perfectly into such scheme. This study shows a possible valorization of wet torrefied (300 °C) poultry litter (WTPL) through activation and its further use as a fertilizer, and as a wastewater micro-pollutant absorbent. The WTPL was activated thermally, physically (CO2) and chemically (KOH) at two different temperatures (600 °C and 800 °C) and 30 min residence time. The properties of ACs were evaluated based on results of the elemental and proximate analysis, suspension pH measurement, ICP-OES, FT-IR, N2 and CO2 adsorption and quantity of absorbed methylene blue (MB). The yields in thermal and physical ACs were comparable, but much higher than ACs from chemical activation (c.a. 50% and 15% at 600 °C and c.a. 47% and 6.5% at 800 °C). AGI-24512 concentration The thermal and physical ACs showed good suitability for application as a fertilizer due to their high macro- and micro-nutrients and low heavy metals concentration. Carbons activated with KOH proved their usefulness as wastewater pollutant absorbers through high MB's absorption (675.8 mg/g for 600 °C and 872.8 mg/g for 800 °C). Results state that the valorization of PL through activation is possible, and the selection of the activation method affects the final application of obtained material.China's energy structure is based on coal resource and it accounts for main proportion in the primary energy consumption. Coal consumption produces PM2.5 pollution, which seriously affects public health. Considering that there are few studies on the effect PM2.5 pollution produced by coal consumption, this paper uses the Poisson Regression model to estimate the impacts on public health and the economic loss of PM2.5 pollution produced by coal consumption using the data in 2015. Based on these results, the paper also predicts the impacts on public health effect and its economic loss caused by PM2.5 pollution from coal consumption under the baseline scenario and total coal consumption control scenario in 2020 and 2030. Finally, based on the research conclusions, suggestions are proposed to reduce the public health economic loss from PM2.5 pollution caused by coal consumption.
My Website: https://www.selleckchem.com/products/agi-24512.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team