Notes
![]() ![]() Notes - notes.io |
The conducted analyses confirmed that the tested slag meets the requirements for the granulated blast furnace slag as an additive to the concrete in the following parameters CaO ≤ 18.0%, SO3 ≤ 2.5% and Cl ≤ 0.1%. At the same time, mechanical features were tested of the designed mortars which consisted of a mixture of Portland cement (CEM I) with 30% of slag admixture. The designed mortar after 28 days of maturing reached a compressive strength of 32.0 MPa, and bending strength of 4.0 MPa. When compared to the milled granulated blast furnace slag (GBFS), the obtained values are slightly lower. Furthermore, the hardened mortars were subject to a leachability test to check the impact on the environment. Test results showed that the aqueous extracts from mixtures with 30% of slag admixtures slightly exceed the limits and do not pose a sufficiant threat to the environment as to eliminate the MSWI slag from economical use.Healthcare professionals (HCPs) can play a key role in promoting health literacy (HL) in patients to help them navigate the healthcare system effectively. This involves assisting patients to locate, comprehend and evaluate health information. HCPs should assess patients' health literacy needs and check the patient´s understanding to communicate adequate health information. This review investigates the agreement between the patients' and HCPs assessment of patients' HL. A systematic literature search in PubMed, Scopus, PsycINFO, CINAHL and the Cochrane Library was performed in November 2019. The search yielded 6762 citations, seven studies met the inclusion criteria. The following HL measurement instruments were completed by the patients in the included studies REALM (n = 2), REALM-R (n = 1), S-TOFHLA (n = 1), NVS (n = 1), SILS (n = 1), HLSI-SF (n = 1) and HLS-EU-Q16 (n = 1). The HCPs assessed patients' HL by answering questions that reflect the content of standardized tools. Six studies reported that a high proportion of patients assigned to have HL needs based on their self-report were overestimated by their HCPs in terms of the HL level. The results demonstrated that HCPs had difficulty determining patients' HL adequately. Differences between the HL estimation of HCPs and the actual HL skills of patients might lead to communication problems.The introduction of 5G communication capabilities presents additional challenges for the development of products and services that can fully exploit the opportunities offered by high bandwidth, low latency networking. This is particularly relevant to an emerging interest in the Industrial Internet of Things (IIoT), which is a foundation stone of recent technological revolutions such as Digital Manufacturing. A crucial aspect of this is to securely authenticate complex transactions between IIoT devices, whilst marshalling adversarial requests for system authorisation, without the need for a centralised authentication mechanism which cannot scale to the size needed. In this article we combine Physically Unclonable Function (PUF) hardware (using Field Programmable Gate Arrays-FPGAs), together with a multi-layer approach to cloud computing from the National Institute of Standards and Technology (NIST). Through this, we demonstrate an approach to facilitate the development of improved multi-layer authentication mechanisms. We extend prior work to utilise hardware security primitives for adversarial trojan detection, which is inspired by a biological approach to parameter analysis. This approach is an effective demonstration of attack prevention, both from internal and external adversaries. The security is further hardened through observation of the device parameters of connected IIoT equipment. We demonstrate that the proposed architecture can service a significantly high load of device authentication requests using a multi-layer architecture in an arbitrarily acceptable time of less than 1 second.Interactive displays are becoming increasingly popular in informal learning environments as an educational technology for improving students' learning and enhancing their engagement. Interactive displays have the potential to reinforce and maintain collaboration and rich-interaction with the content in a natural and engaging manner. Despite the increased prevalence of interactive displays for learning, there is limited knowledge about how students collaborate in informal settings and how their collaboration around the interactive surfaces influences their learning and engagement. We present a dual eye-tracking study, involving 36 participants, a two-staged within-group experiment was conducted following single-group time series design, involving repeated measurement of participants' gaze, voice, game-logs and learning gain tests. Various correlation, regression and covariance analyses employed to investigate students' collaboration, engagement and learning gains during the activity. The results show that collaboratively, pairs who have high gaze similarity have high learning outcomes. selleck chemicals Individually, participants spending high proportions of time in acquiring the complementary information from images and textual parts of the learning material attain high learning outcomes. Moreover, the results show that the speech could be an interesting covariate while analyzing the relation between the gaze variables and the learning gains (and task-based performance). We also show that the gaze is an effective proxy to cognitive mechanisms underlying collaboration not only in formal settings but also in informal learning scenarios.Metal-organic frameworks (MOFs) are a fascinating class of porous crystalline materials constructed by organic ligands and inorganic connectors. Owing to their noteworthy catalytic chemistry, and matching or compatible coordination with numerous materials, MOFs offer potential applications in diverse fields such as catalysis, proton conduction, gas storage, drug delivery, sensing, separation and other related biotechnological and biomedical applications. Moreover, their designable structural topologies, high surface area, ultrahigh porosity, and tunable functionalities all make them excellent materials of interests for nanoscale applications. Herein, an effort has been to summarize the current advancement of MOF-based materials (i.e., pristine MOFs, MOF derivatives, or MOF composites) for electrocatalysis, photocatalysis, and biocatalysis. In the first part, we discussed the electrocatalytic behavior of various MOFs, such as oxidation and reduction candidates for different types of chemical reactions. The second section emphasizes on the photocatalytic performance of various MOFs as potential candidates for light-driven reactions, including photocatalytic degradation of various contaminants, CO2 reduction, and water splitting.
Website: https://www.selleckchem.com/products/unc6852.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team