Notes
![]() ![]() Notes - notes.io |
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease and important risk factor for cardiac diseases, diabetes and extrahepatic cancers. Natural 3'-geranylchalconaringenin (GC) and desmethylxanthohumol (DX) from hop were synthesized using a regio-selective iodination and the Suzuki coupling reaction as key steps. GC and DX, along with their aglycone naringenin chalcone (NC) were investigated their decreasing the accumulation of cellular lipids. GC reduced lipid content and activated the AMP-activated protein kinase (AMPK) pathway in HepG2 and 3T3-L1 cells. In addition, GC had an obvious therapeutic effect on alleviating NAFLD and metabolic syndrome by activating the AMPK pathway in vivo. In conclusion, GC may be potentially used as a candidate drug and functional food for treating NAFLD and metabolic syndrome.The dysfunction of histone deacetylase (HDACs) is closely related to tumorigenesis and development, which has been emerged as an attractive drug design target for cancer therapy. In the present study, we designed and synthesized a series of novel HDAC inhibitors using a substituted quinazoline as the capping group and attaching 3, 5-dimethylbenyl as a potential metabolic site protector. learn more 23g and 23h were demonstrated potent HDAC inhibitory activities and anti-proliferative effects against MDA-MB-231 cells. In addition, 23g and 23h both could significantly increase the acetylation level of intracellular proteins, especially in α-Tubulin and HSP90. 23g and 23h displayed a slight different anti-tumor mechanism, 23g mainly induced apoptosis while 23h induced obviously ER-Stress. Furthermore, 23g and 23h both induced autophagy and migration inhibition. In pharmacokinetics assay, 23g showed a significant improvement of pharmacokinetic profile for oral administration. Additionally, 23g presented more potent anti-proliferation and anti-migration activity than SAHA in zebrafish MDA-MB-231 cell line-derived xenograft model. Together, these results demonstrate that 23g is a novel oral HDAC inhibitor with a potential capacity of treating breast cancer.Bicyclic polyprenylated acylphloroglucinols (BPAPs), the principal bioactive benzophenone products isolated from plants of genera Garcinia and Hypericum, have attracted noticeable attention from the synthetic and biological communities due to their fascinating chemical structures and promising biological activities. However, the potential drug interaction, undesired physiochemical properties and toxicity have limited their potential use and development. In the last decade, pharmaceutical research on the structural modifications, structure-activity relationships (SARs) and mechanisms of action of BPAPs has been greatly developed to overcome the challenges. A comprehensive review of these scientific literature is extremely needed to give an overview of the rapidly emerging area and facilitate research related to BPAPs. This review, containing over 226 references, covers the progress made in the chemical synthesis-based structure modifications, SARs and the mechanism of action of BPAPs in vivo and vitro. The most relevant articles will focus on the discovery of lead compounds via synthetic modifications and the important BPAPs for which the direct targets have been deciphered. From this review, several key points of the SARs and mode of actions of this novel class of compounds have been summarized. The perspective and future direction of the research on BPAPs are concluded. This review would be helpful to get a better grasp of medicinal research of BPAPs and become a compelling guide for chemists dedicated to the synthesis of these compounds.Ergosterol as the core component of fungal cell membrane plays a key role in maintaining cell morphology and permeability. The squalenee epoxidase (SE) and 14-demethylase (CYP51) are the important rate-limiting enzymes for ergosterol synthesis. In the study, these active fragments, which is derived from the structural groups of the common antifungal agents, were docked into the active sites of dual targets (SE, CYP51), respectively. Some of active fragments with the matching MCSS_Score values were selected and connected to construct three different series of novel arylalkene-amide derivatives as dual-target (SE, CYP51) antifungal inhibitors. Subsequently, these compounds were further synthesized, and their bioactivity was evaluated. Most of compounds showed a certain degree of antifungal activity in vitro. It was worth noting that the target compounds 17a and 25a with excellent antifungal activity (0.125-4 μg/mL) can inhibit the fluconazole-resistant Candida Strain 17#, CaR, 632, and 901 in the range of MIC values (4-8 μg/mL). Furthermore, their molecular mechanism, structural stability and low toxicity were further confirmed. The molecular docking and ADMET properties were predicted to guide the subsequent optimization of target compounds.As a continuation of earlier works, a series of novel quinazolinone derivatives (5a-s) were synthesized and evaluated for their in vitro anti-HBV and anti-hepatocellular carcinoma cell (HCC) activities. Among them, compounds 5j and 5k exhibited most potent inhibitory effect on HBV DNA replication in both drug sensitive and resistant (lamivudine and entecavir) HBV strains. Interestingly, besides the anti-HBV effect, compound 5k could significantly inhibit the proliferation of HepG2, HUH7 and SK- cells, with IC50 values of 5.44, 6.42 and 6.75 μM, respectively, indicating its potential anti-HCC activity. Notably, the in vitro anti-HCC activity of 5k were more potent than that of positive control 5-fluorouracil and sorafenib. Further studies revealed that compound 5k could induce HepG2 cells apoptosis by dose-dependently upregulating Bad and Bax expression and decreasing Bcl-2 and Bcl-xl protein level. Considering the potent anti-HBV and anti-HCC effect, compound 5k might be a promising lead to develop novel therapeutic agents towards HBV infection and HBV-induced HCC.The AT-rich interaction domain 1A (ARID1A) are frequently mutates across a broad spectrum of cancers. The majority of ARID1A mutations are inactivating mutations and lead to loss expression of the ARID1A protein. To date, clinical applicable targeted cancer therapy based on ARID1A mutational status has not been described. With increasing number of studies reported that the ARID1A deficiency may be a novel predictive biomarker for immune checkpoint blockade (ICB) treatment. ARID1A deficiency would compromise mismatch repair pathway and increase the number of tumor-infiltrating lymphocytes, tumor mutation burden and expression of programmed cell death ligand 1 (PD-L1) in some cancers, which would suggested cooperate with ICB treatment. In this review, we summarize the relationship between ARID1A deficiency and ICB treatment including potential mechanisms, potential therapeutic combination, and the biomarker value of ARID1A deficiency.
Website: https://www.selleckchem.com/products/irak4-in-4.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team