Notes
![]() ![]() Notes - notes.io |
The splenocytes conditioned media cultured with GSF3 increased Fas mRNA expression amounts in the treated MCF-7 cells. There was a significant negative correlation between Th2-polarized cytokines secreted by immune cells and Fas mRNA expression levels in the corresponding treated MCF-7 cells. Our findings suggested that GSF3 is a potent anti-cancerous polysaccharide by direct action or indirectly modulating immune cell cytokine secretion profiles.Incorporation of drugs in clay minerals has been widely proposed for the controlled-release or increased solubility of drugs. In this context, a bionanocomposite based on kaolinite and cashew gum (Kln/Gum) was synthesized and characterized by X-ray diffraction (XRD), thermal analysis (TG/DTA), and Fourier transform infrared spectroscopy (FTIR). The bionanocomposite was applied to the incorporation and further release of doxazosin mesylate (DB). The influence of solution pH (1-3), adsorbent dose (20-50 mg), initial drug concentration (20.0-70.0 mg L-1), contact time (15-300 min), and temperature (25, 35, and 45 °C) were systematically evaluated. Equilibrium was reached around 60 min, with a maximum adsorption capacity of 31.5 ± 2.0 mg g-1 at a pH of 3.0 and 25 °C. Hydrogen bonding contributed to DB incorporation on the Kln/Gum. In addition, DB maximum amounts of 16.80 ± 0.58 and 77.00 ± 2.46% were released at pH values of 1.2 and 7.4, respectively. These results indicated that the Kln/Gum bionanocomposite is an effective and promising material for the incorporation/release of drugs with similar structures to DB.The CONSTANS-like (COL) genes play an important role in the photoperiodic flowering pathway. Poplar is a perennial woody plant with a long juvenile phase, but the molecular characterization of COL genes in Populus is limited. In this study, 14 COL genes were identified in the Populus genome. Phylogenetic analysis indicated the PtCOL proteins were divided into three subgroups, and the members of each subgroup had similar gene structure and motif composition. Chromosome distribution analysis showed that 14 PtCOL genes were distributed on 10 chromosomes. Multiple sequence alignment indicated that these proteins contained a highly conserved B-box1 and a conserved CCT domain, but the B-box2 structure was divided into three different types. Promoter analysis found that there were several light-responsive cis-elements in the PtCOL genes. Furthermore, tissue-specific expression showed that all nine PtCOL genes were widely expressed in various tissues and organs of Populus, and were preferentially expressed in the leaves. Additionally, the transcription level of PtCOL exhibited a diurnal oscillation pattern in different light conditions. This study not only provided comprehensive information for further analysis of the function of the PtCOL gene family, but also revealed the biological roles of PtCOL genes in the photoperiod-dependent flowering process of Populus.Lignin-carbohydrate complex (LCC) was proven to possess antioxidant activities. To understand structures and antioxidant activities of LCC, water-soluble LCC-stalk, LCC-sheath and LCC-leaf were isolated from ball-milled wheat straw stalk, sheath and leaf by successive dissolution in LiCl/DMSO solvent, water extraction and purification. LCCs were later structurally characterized by wet chemistry, chromatography and spectroscopy respectively. Their antioxidant activities were evaluated by ferric reducing antioxidant power (FRAP) and DPPH radical scavenging assays. The results showed that three LCCs were carbohydrate-rich (≈70%) and presented relatively narrow molecular weight distribution (PI less then 2.0). The lignin moieties of LCCs were mainly connected with β-O-4' structures, and phenyl glycoside and γ-ester linkages were main LCC linkages in LCCs. STA-9090 inhibitor However, guaiacyl units were the predominant lignin units in LCC-stalk and LCC-sheath, while syringyl units were predominant in LCC-leaf. Intermolecular cross-linkages were mainly pCA-bridges in LCC-stalk and FA-bridges in LCC-sheath and LCC-leaf. Besides, LCC-sheath featured higher polysaccharide content exhibited higher molecular weight, fewer LCC linkages and better antioxidant activities (DPPH radical scavenging rate up to 74.91%) than both LCC-stalk (74.55%) and LCC-leaf (64.52%). This work helped to know LCCs in wheat straw well and inspire the application of LCC as potential antioxidants.Background The therapeutic application of small interfering RNA is limited by the lack of an effective delivery system to tumors. In the present study, an efficient approach to deliver siRNA to cancer cells using exosome system was developed. Materials & methods Exosomes were isolated from bovine milk and exosomes-coated bcl-2 siRNA (exosiBcl-2) was synthesized using ultrasonic approach. The anticancer effect of exsosiBcl-2 was studied by Confocal microscopy, flow cytometry, scratch wound healing and Transwell experiments, RT-qPCR and Western blot approaches, etc. Xenograft nude mice tumor model was performed to check the antitumor activity of exosiBcl-2 in vivo. Results ExosiBcl-2 can cross the cell membrane efficiently and inhibit the growth of cancer cells. ExosiBcl-2 treatment led to apoptosis and dramatic inhibition of migration and invasion of cancer cells via downregulating metastatic related genes. In vivo study revealed that exosiBcl-2 inhibited the tumor growth significantly in nude mice. Conclusion ExosiBcl-2 has potential to be developed as a novel anticancer agent.Nelumbo nucifera, more commonly known as the Indian lotus, is an important plant that has been incorporated into traditional herbal remedies along the years. Even today, lotus leaves are considered reservoirs for bioactive compounds that can be used as nutritional supplements to treat various human diseases. However, despite the wide ranging biological activities of lotus polysaccharides, limited information is available regarding the anti-osteoporotic effects of these substances. The aim of this study was to investigate the beneficial effects of pectinase-assisted extractable polysaccharides from lotus leaves (LLEP) on estrogen deficiency-induced bone loss and osteoclast differentiation in bone marrow-derived macrophages. We found that LLEP markedly inhibited receptor activator of the nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation in a dose-dependent manner. It also revoked RANKL-induced activation of osteoclastogenic signals such as the expression of key transcription factors (i.e., c-Fos and nuclear factor of activated T cells cytoplasmic 1), resulting in a decrement in osteoclast-specific marker gene expressions.
Website: https://www.selleckchem.com/products/ganetespib-sta-9090.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team