Notes
![]() ![]() Notes - notes.io |
In addition, excellent activities of almost 100% were obtained within ten cycles of removal using the micromotors. This newly developed bioremediation strategy holds considerable promise in for its application in large scale water treatment systems and many relevant environmental processes.Bisphenols (BPs), as widely used plastic additives, penetrate into our daily lives. BPs are considered endocrine disruptors and could potentially induce obesity. In this study, the effects of bisphenol A (BPA) and tetrabromobisphenol A (TBBPA) on food intake and lipid metabolism in zebrafish were determined. Moreover, the impact of BPA and TBBPA on the endocannabinoid system (ECS) of zebrafish was further explored by metabolomics, transcriptomics, and molecular docking analysis. Here we show that exposure to BPA and TBBPA at concentrations commonly found in the environment (20, 100, and 500 μg/L) led to hyperphagia and obesity in adult male zebrafish. Metabolomics and histopathological analysis revealed significant lipid accumulation in the liver of zebrafish exposed to BPA and TBBPA. The expression of ECS-related genes, in conjunction with RNA-Seq results, further indicated that BPA and TBBPA increased appetite and induced obesity by activating cannabinoid receptor type 1(CB1). Furthermore, molecular docking revealed that six representative BPs including BPA and TBBPA could bind to the CB1 receptor. Collectively, these findings indicate that CB1 may be a potential target for BPs to induce obesity.Phycoremediation is an emerging technology, where algae-based processes were used to effectively remove nutrients, organic wastes, and toxic heavy metals from the polluted environment. The waste algal biomass obtained after phycoremediation, which may contain residual hazardous materials, could still be used as feedstock to produce biofuels/bioenergy preferably through thermochemical conversion technology. This review proposes a synergistic approach by utilizing the phycoremediation-derived algal biomass (PCDA) as feedstock for efficient hazardous waste treatment and clean energy generation via supercritical water gasification (SCWG). The review provides an in-depth study of catalytic, non-catalytic, and continuous SCWG of algal biomass, aiming to lay out the foundations for future study. In addition, the concepts of heat integration as well as water, nutrient, and CO2 recycling were introduced for a sustainable algae-to-biofuel process, which significantly enhances the overall energy and material efficiency of SCWG. The production of biofuel from algal biomass via other advanced gasification technologies, such as integration with other thermochemical conversion techniques, co-gasification, chemical looping gasification (CLG), and integrated gasification and combined cycle (IGCC) were also discussed. Furthermore, the discussion of kinetics and thermodynamics models, as well as life cycle and techno-economic assessments, appear to provide insights for future commercial applications.DNA gyrase is an essential DNA topoisomerase that exists only in bacteria. Since novobiocin was withdrawn from the market, new scaffolds and new mechanistic GyrB inhibitors are urgently needed. In this study, we employed fragment screening and X-ray crystallography to identify new building blocks, as well as their binding mechanisms, to support the discovery of new GyrB inhibitors. In total, 84 of the 618 chemical fragments were shown to either thermally stabilize the ATPase domain of Escherichia coli GyrB or inhibit the ATPase activity of E. coli gyrase. Among them, the IC50 values of fragments 10 and 23 were determined to be 605.3 μM and 446.2 μM, respectively. Cocrystal structures of the GyrB ATPase domain with twelve fragment hits were successfully determined at a high resolution. All twelve fragments were deeply inserted in the pocket and formed H-bonds with Asp73 and Thr165, and six fragments formed an additional H-bond with the backbone oxygen of Val71. Fragment screening further highlighted the capability of Asp73, Thr165 and Val71 to bind chemicals and provided diverse building blocks for the design of GyrB inhibitors.Peptide hydrogels, deriving from natural protein fragments, present unique advantages as compatibility and low cost of production that allow their wide application in different fields as wound healing, cell delivery and tissue regeneration. To engineer new biomaterials, the change of the chirality of single amino acids demonstrated a powerful approach to modulate the self-assembly mechanism. Recently we unveiled that a small stretch spanning residues 268-273 in the C-terminal domain (CTD) of Nucleophosmin 1 (NPM1) is an amyloid sequence. Herein, we performed a systematic D-scan of this sequence and analyzed the structural properties of obtained peptides. The conformational and kinetic features of self-aggregates and the morphologies of derived microstructures were investigated by means of different biophysical techniques, as well as the compatibility of hydrogels was evaluated in HeLa cells. All the investigated hexapeptides formed hydrogels even if they exhibited different conformational intermediates during aggregation, and they structural featured are finely tuned by introduced chiralities.The hydrocarbons of eight lichen species isolated in Japan were analyzed, and diverse mono-, di-, and tri-unsaturated alkenes were detected. The positions of the double bonds of C17 alkadienes (heptadecadiene) and C17-C20 alkenes were determined by mass spectrometry of their dimethyl disulfide adducts. We found that the six lichens containing green algal photobionts were distinguished by the presence of 1,8-heptadecadiene, 6,9-heptadecadiene, and 8- and 7-heptadecenes. On the other hand, 1-octadecene, 4-octadecene, and 5-nonadecene were the major alkene components of the two lichens with cyanobacterial photobionts. These alkadienes and alkenes were present in large quantities in the lichen samples. selleck chemical In particular, 1,8-heptadecadiene accounted for more than 90% of the total alkenes in all four lichens containing it. Our results provide new insights into the origin of C17 alkadienes and C17-C20 alkenes in environmental and geological samples, and these alkenes can potentially be applied as lichen biomarkers.
Here's my website: https://www.selleckchem.com/products/gdc-0068.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team