Notes
![]() ![]() Notes - notes.io |
The certification module is a lightweight neural network based on statistical learning ideas and a multi-source feature fusion mechanism. The information entropy of the iris feature label was used to set the iris entropy feature category label and design certification module functions according to the category label to obtain the certification module result. As the requirements for the number and quality of irises changes, the category labels in the certification module function were dynamically adjusted using a feedback learning mechanism. This paper uses iris data collected from three different sensors in the JLU(Jilin University) iris library. The experimental results prove that for the lightweight multi-state irises, the abovementioned problems are ameliorated to a certain extent by this method.This paper presents an algorithm for the measurement of the human heart rate, using photoplethysmography (PPG), i.e., the detection of the light at the skin surface. The signal from the PPG sensor is processed in time-domain; the peaks in the preprocessed and conditioned PPG waveform are detected by using a peak detection algorithm to find the heart rate in real time. Apart from the PPG sensor, the accelerometer is also used to detect body movement and to indicate the moments in time, for which the PPG waveform can be unreliable. This paper describes in detail the signal conditioning path and the modified algorithm, and it also gives an example of implementation in a resource-constrained wrist-wearable device. The algorithm was evaluated by using the publicly available PPG-DaLia dataset containing samples collected during real-life activities with a PPG sensor and accelerometer and with an ECG signal as ground truth. The quality of the results is comparable to the other algorithms from the literature, while the required hardware resources are lower, which can be significant for wearable applications.Heat stress is a known promoter of reactive oxygen species generation, which may compromise pregnancy and foetal development. Melatonin is a pleiotropic molecule that regulates various processes including pregnancy. Thus, it could be used to ameliorate the redox status of pregnant heat-stressed ewes and the outcome of their pregnancy. Sixty-eight ewes participated in the study, which were allocated into two equal groups, i.e., Melatonin (M) and Control (C) group. All ewes were exposed to heat stress from D0 to D120. In both groups, after oestrus synchronization of ewes, rams were introduced to them for mating (D16). In M group, starting with sponges' insertion (D0), melatonin implants were administered four-fold every 40 days. Pregnancy diagnosis was performed by means of ultrasonography. Daily evaluation of temperature humidity index (THI), rectal temperature, and breathing rate were performed throughout the study. Blood samples were collected repeatedly from D0 until weaning for assaying redox biomarkers. Milk yield was measured thrice during puerperium. The results showed that melatonin administration throughout pregnancy improved the redox status of heat-stressed ewes and increased the mean number and bodyweight of lambs born per ewe, as well as the milk production. Therefore, melatonin may be used as antioxidant regimen in heat-stressed ewes for improving their reproductive traits.The aim of the present study is to investigate the potential of sea water as a feasible alternative to produce alkali-activated fly ash material. The alkali-activated fly ash binder was fabricated by employing conventional pure water, tap water, and sea water based alkali activating solution. The characteristics of alkali-activated materials were examined by employing compressive strength, mercury intrusion porosimetry, XRD, FT-IR, and 29Si NMR along with ion chromatography for chloride immobilization. The results provided new insights demonstrating that sea water can be effectively used to produce alkali activated fly ash material. The presence of chloride in sea water contributed to increase compressive strength, refine microstructure, and mineralogical characteristics. Furthermore, a higher degree of polymerization on the sea water-based sample was observed by FT-IR and 29Si NMR analysis. However, the higher amount of free chloride ion even after immobilization in sea water-based alkali-activated material, should be considered before application in reinforced structural elements.Abstract This paper firstly reveals that when assessing if a bonded joint meets the certification requirements inherent in MIL-STD-1530D and the US Joint Services Standard JSSG2006 it is necessary to ensure that (a) There is no yielding at all in the adhesive layer at 115% of design limit load (DLL), and (b) that the joint must be able to withstand design ultimate load (DUL). Secondly, it is revealed that fatigue crack growth in both nano-reinforced epoxies, and structural adhesives can be captured using the Hartman-Schijve crack growth equation, and that the scatter in crack growth in adhesives can be modelled by allowing for variability in the fatigue threshold. Thirdly, a methodology was established for estimating a valid upper-bound curve, for cohesive failure in the adhesive, which encompasses all the experimental data and provides a conservative fatigue crack growth curve. Finally, it is shown that this upper-bound curve can be used to (a) compare and characterise structural adhesives, (b) determine/assess a "no growth" design (if required), (c) assess if a disbond in an in-service aircraft will grow and (d) to design and life in-service adhesively-bonded joints in accordance with the slow-growth approach contained in the United States Air Force (USAF) certification standard MIL-STD-1530D.High sensitivity biosensors based on the coupling of surface plasmon polaritons on titanium nitride (TiN) and a planar waveguide mode were built; they were proved by sensing three different media air, water and dried egg white; sensors described here could be useful for sensing materials with a refractive index between 1.0 and 1.6; in particular, materials of biological interest with a refractive index in the range 1.3-1.6, like those containing biotin and/or streptavidin. They were built by depositing Nb2O5/SiO2/TiN multilayer structures on the flat surface of D-shaped sapphire prisms by using the dc magnetron sputtering technique. Estradiol Benzoate progestogen agonist Attenuated total reflection (ATR) experiments in the Kretschmann configuration were accomplished for the air/TiN/Prism and S/Nb2O5/SiO2/TiN/Prism structures, S being the sample or sensing medium. ATR spectra for plasmons at the TiN/air interface showed a broad absorption band for angles of incidence between 36 and 85°, with full width at half maximum (FWHM) of approximately 40°. For the S/Nb2O5/SiO2/TiN/Prism structures, ATR spectra showed a sharp reflectivity peak, within the broad plasmonic absorption band, which was associated with Fano resonances.
Here's my website: https://www.selleckchem.com/products/estradiol-benzoate.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team