Notes
![]() ![]() Notes - notes.io |
The microbial growth was described through a Monod-type kinetic equation as a first approach. Substrate inhibition, decay rate and tannin hydrolysis process were included to better describe the behaviour of immobilised biomass selected in the tannin-degrading bioreactor. The model was implemented in AQUASIM using the specific tool Biofilm Compartment to simulate the attached fungal biofilm. Biofilm features and transport parameters were either measured or assumed from the literature. Key kinetic and stoichiometric unknown parameters were successfully estimated, overcoming critical steps for scaling-up a novel fungal-based technology for tannins biodegradation.This work investigates the efficiency of LED and UV-C photo-reactors for paracetamol degradation using advanced oxidative processes. Among the evaluated processes, photo-Fenton was the most efficient for both radiations. Degradations greater than 81% (λ 197 nm) and 91% (λ 243 nm) were obtained in the kinetic study. These degradations were also observed by means of the reduction in the peaks in both spectral scanning and high-performance liquid chromatography analysis. The good fit of the Chan and Chu kinetic model shows that the degradation reaction has pseudo-first order behavior. Toxicity tests did not indicate the inhibition of growth of Lactuca sativa seeds and Escherichia coli bacterium. However, the growth of strains of the Salmonella enteritidis bacterium was inhibited in all the samples, demonstrating that only this bacterium was sensitive to solutions. The proposed empirical models obtained from the 24 factorial designs were able to predict paracetamol degradation. These models could, at the same levels assessed, be used to predict the percentage of degradation in studies using other organic compounds. The LED and UV-C photo-reactors were, when employing the photo-Fenton process, able to degrade paracetamol, thus highlighting the efficiency of LED radiation when its power (three times smaller) is compared to that of UV-C radiation.We analyzed the effects of pyrolysis temperature and duration on the physiochemical properties and Cd(II) adsorption capacity of spent tea leaves (STL) biochar. The STL biochar was produced by pyrolysis at 300, 400, 500 and 600 °C for 1 and 2 h. The pyrolysis temperature was positively correlated to the ash content, pH, electrical conductivity, specific surface area (SBET), pore volume (PV) and C content, and negatively with the total yield, O, H and N content, and the O/C and H/C atomic ratios. Furthermore, the surface porosity of STL biochar increased, the density of oxygen-containing functional groups decreased, and the formation of aromatic structures was enhanced at higher pyrolysis temperatures. The adsorption of Cd(II) onto STL biochar fitted with the pseudo-second-order kinetics and Langmuir isotherms model. The STL biochar produced at 600 °C for 2 h showed the maximum Cd(II) adsorption capacity of 97.415 mg/g. In addition, Cd(II) adsorption was mainly physical and occurred in monolayers. Thus, STL biochar is a suitable low-cost adsorbent for wastewater treatment.Layered double hydroxides (LDH) with highly flexible and adjustable chemical composition and physical properties have attracted tremendous attention in recent years. A series of LDH with different M (Mg, Zn, Mn)-Fe molar ratios were synthesized by the double titration co-precipitation method. The effect of the factors, including M (Mg, Zn, Mn) Fe molar ratio, pH, and M-Fe LDH dosage, on the ability of the prepared M-Fe LDH to remove cationic methylene blue (MB) dye from aqueous solution were investigated. Results indicated that the removal efficiency of MB (10 mg/L) was the best at the M (Mg, Zn, Mn) Fe molar ratio of 31 by using 2.0 g/L of M-Fe LDH at pH 6.0 under 298.15 K. Mg-Fe LDH had the highest removal performance (71.94 mg/g at 298.15 K) for MB compared to those of the Zn-Fe and Mn-Fe LDH. Zn-Fe LDH with the smallest activation energy resulted in the fastest adsorption rate of MB. The pseudo-second-order model and Langmuir adsorption isotherm were also successfully applied to fit the theory of M-Fe LDH for removal of MB.The struvite crystallization process can recover struvite crystals as a valuable slow-release fertilizer from the side stream of wastewater treatment plants (WWTPs). The purpose of this study is to demonstrate the crystal growth characteristics and determine the appropriate recovery criteria for a struvite crystallization pilot plant. A pilot plant (8.6 m3/d) was designed with a feeding system of MgO (magnesium oxide), a pH controller, and a hydrocyclone for recovering struvite; the plant was operated for 42 hours at a pH range of 8.25-8.5. The removal efficiencies for PO4-P and NH4-N were 82.5-90.7% and 13.4-22.9%, respectively. The struvite recovered from the hydrocyclone was sifted using standard sieves and analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The dry weight fraction of the precipitate in the 300-600 μm range increased gradually from 7% to 74% in 18 hours. selleckchem The XRD analysis revealed that the crystalline structure of the precipitate in the 150-600 μm range indicates struvite without any peaks of MgO, Mg(OH)2, and MgCO3. This indicates that the critical conditions for recovering struvite from the side-stream of WWTPs are an operation period of 18 hours and a crystal size greater than 300 μm.The exploitation of petroleum in offshore areas is becoming more prosperous due to the increasing human demand for oil. However, the effects of offshore petroleum exploitation on the microbial community in the surrounding environment are still not adequately understood. In the present study, variations in the composition, function, and antibiotic resistance of the microbial community in marine sediments adjacent to an offshore petroleum exploitation platform were analyzed by a metagenomics-based method. Significant shifts in the microbial community composition were observed in sediments impacted by offshore petroleum exploitation. Nitrosopumilales was enriched in marine sediments with the activities of offshore petroleum exploitation compared to the control sediments. The abundances of function genes involved in carbon, butanoate, methane, and fatty acid metabolism in sediment microbial communities also increased due to the offshore petroleum exploitation. Offshore petroleum exploitation resulted in the propagation of some antibiotic resistance genes (ARGs), including a multidrug transporter, smeE, and arnA, in marine sediments via horizontal gene transfer mediated by class I integrons.
Read More: https://www.selleckchem.com/products/dac51.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team