Notes
![]() ![]() Notes - notes.io |
Today, antivirulence compounds that attenuate bacterial pathogenicity and have no interference with bacterial viability or growth are introduced as the next generation of antibacterial agents. However, the development of such compounds that can be used by humans is restricted by various factors, including the need for extensive economic investments, the inability of many molecules to penetrate the membrane of Gram-negative bacteria, and unfavorable pharmacological properties and cytotoxicity. Here, we take a new and different look into two frequent supplements, vitamin E and K1, as anti-quorum-sensing agents against Pseudomonas aeruginosa, a pathogen that is hazardous to human life and responsible for several diseases. Both vitamins showed significant anti-biofilm activity (62% and 40.3% reduction by vitamin E and K1, respectively), and the expression of virulence factors, including pyocyanin, pyoverdine, and protease, was significantly inhibited, especially in the presence of vitamin E. Cotreatment of constructed biofilms with these vitamins plus tobramycin significantly reduced the number of bacterial cells sheltered inside the impermeable matrix (71.6% and 69% by a combination of tobramycin and vitamin E or K1, respectively). The in silico studies, besides the similarities of chemical structures, reinforce the possibility that both vitamins act through inhibition of the PqsR protein. This is the first report of the antivirulence and antipathogenic activity of vitamin E and K1 against P. aeruginosa and confirms their potential for further research against other multidrug-resistant bacteria.Limited information is available on whether bla KPC-containing plasmids from isolates in a hospital outbreak can be differentiated from epidemiologically unrelated bla KPC-containing plasmids based on sequence data. This study aimed to evaluate the performance of three approaches to distinguish epidemiologically related from unrelated bla KPC-containing pKpQiL-like IncFII(k2)-IncFIB(pQiL) plasmids. Epidemiologically related isolates were subjected to short- and long-read whole-genome sequencing. A hybrid assembly was performed, and plasmid sequences were extracted from the assembly graph. Epidemiologically unrelated plasmid sequences were extracted from GenBank. Pairwise comparisons of epidemiologically related and unrelated plasmids based on SNPs using snippy and of phylogenetic distance using Roary and using a similarity index that penalizes size differences between plasmids (Stoesser index) were performed. The percentage of pairwise comparisons misclassified as genetically related or as clonally unrelated was determined using different genetic thresholds for genetic relatedness. The ranges of number of SNPs, Roary phylogenetic distance, and Stoesser index overlapped between the epidemiologically related and unrelated plasmids. When a genetic similarity threshold that classified 100% of epidemiologically related plasmid pairs as genetically related was used, the percentages of plasmids misclassified as epidemiologically related ranged from 6.7% (Roary) to 20.8% (Stoesser index). Although epidemiologically related plasmids can be distinguished from unrelated plasmids based on genetic differences, bla KPC-containing pKpQiL-like IncFII(k2)-IncFIB(pQiL) plasmids show a high degree of sequence similarity. The phylogenetic distance as determined using Roary showed the highest degree of discriminatory power between the epidemiologically related and unrelated plasmids.Aspergillus niger is an opportunistic pathogen commonly found in a variety of indoor and outdoor environments. An environmental isolate of A. niger from a pig farm was resistant to itraconazole, and in-depth investigations were conducted to better understand cellular responses that occur during growth when this pathogen is exposed to an antifungal. Using a combination of cultivation techniques, antibiotic stress testing, and label-free proteomics, this study investigated the physiological and metabolic responses of A. niger to sublethal levels of antifungal stress. Challenging A. niger with itraconazole inhibited growth, and the MIC was estimated to be > 16 mg · liter-1 Through the proteome analysis, 1,305 unique proteins were identified. During growth with 2 and 8 mg · liter-1 itraconazole, a total of 91 and 50 proteins, respectively, were significantly differentially expressed. When challenged with itraconazole, A. niger exhibited decreased expression of peroxidative enzymes, increased expression of an ATP-binding cassette (ABC) transporter most likely involved as an azole efflux pump, and inhibited ergosterol synthesis; however, several ergosterol biosynthesis proteins increased in abundance. Furthermore, reduced expression of proteins involved in the production of ATP and reducing power from both the tricarboxylic acid (TCA) and glyoxylate cycles was observed. The mode of action of triazoles in A. niger therefore appears more complex than previously anticipated, and these observations may help highlight future targets for antifungal treatment.The plasmid-mediated tet(X7) conferring high-level tigecycline resistance was identified in five mcr-1.1-positive Escherichia coli strains (ST10 [n = 3] and ST155 [n = 2]) isolated from chickens in Egypt. Two fosfomycin-resistant fosA4-carrying IncFII plasmids (∼79 kb in size) were detected. Transposase ISCR3 (IS91 family) is syntenic with tet(X7) in all isolates, suggesting its role in the mobilization of tet(X7). To our knowledge, this is the first global report of ST4-IncHI2 plasmids cocarrying tet(X7) and mcr-1.1 from chickens.Invasive yeast infections represent a major global public health issue, and only few antifungal agents are available. find protocol Azoles are one of the classes of antifungals used for treatment of invasive candidiasis. The determination of antifungal susceptibility profiles using standardized methods is important to identify resistant isolates and to uncover the potential emergence of intrinsically resistant species. Here, we report data on 9,319 clinical isolates belonging to 40 pathogenic yeast species recovered in France over 17 years. The antifungal susceptibility profiles were all determined at the National Reference Center for Invasive Mycoses and Antifungals based on the EUCAST broth microdilution method. The centralized collection and analysis allowed us to describe the trends of azole susceptibility of isolates belonging to common species, confirming the high susceptibility for Candida albicans (n = 3,295), Candida tropicalis (n = 641), and Candida parapsilosis (n = 820) and decreased susceptibility for Candida glabrata (n = 1,274) and Pichia kudriavzevii (n = 343).
Here's my website: https://www.selleckchem.com/CDK.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team