Notes
![]() ![]() Notes - notes.io |
Our work reveals that, in UV-treated cells, the mechanisms of translation arrest and SG formation may be unlinked, resulting in SGs that do not contain the major type of polysome-free preinitiation complexes that accumulate in the cytoplasm.This article has an associated First Person interview with the first author of the paper.Sonic hedgehog (Shh) and its patched-smoothened receptor complex control a variety of functions in the developing central nervous system, such as neural cell proliferation and differentiation. Recently, Shh signaling components have been found to be expressed at the synaptic level in the postnatal brain, suggesting a potential role in the regulation of synaptic transmission. Using in utero electroporation of constitutively active and negative-phenotype forms of the Shh signal transducer smoothened (Smo), we studied the role of Smo signaling in the development and maturation of GABAergic transmission in the somatosensory cortex. Our results show that enhancing Smo activity during development accelerates the shift from depolarizing to hyperpolarizing GABA in a manner dependent on functional expression of potassium-chloride cotransporter type 2 (KCC2, also known as SLC12A5). On the other hand, blocking Smo activity maintains the GABA response in a depolarizing state in mature cortical neurons, resulting in altered chloride homeostasis and increased seizure susceptibility. This study reveals unexpected functions of Smo signaling in the regulation of chloride homeostasis, through control of KCC2 cell-surface stability, and the timing of the GABA excitatory-to-inhibitory shift in brain maturation.TAR DNA-binding protein 43 (TDP-43; also known as TARDBP) is an RNA-binding protein whose aggregation is a hallmark of the neurodegenerative disorders amyotrophic lateral sclerosis and frontotemporal dementia. TDP-43 loss increases DNA damage and compromises cell viability, but the actual function of TDP-43 in preventing genome instability remains unclear. Here, we show that loss of TDP-43 increases R-loop formation in a transcription-dependent manner and results in DNA replication stress. TDP-43 nucleic-acid-binding and self-assembly activities are important in inhibiting R-loop accumulation and preserving normal DNA replication. We also found that TDP-43 cytoplasmic aggregation impairs TDP-43 function in R-loop regulation. Furthermore, increased R-loop accumulation and DNA damage is observed in neurons upon loss of TDP-43. Together, our findings indicate that TDP-43 function and normal protein homeostasis are crucial in maintaining genomic stability through a co-transcriptional process that prevents aberrant R-loop accumulation. selleckchem We propose that the increased R-loop formation and genomic instability associated with TDP-43 loss are linked to the pathogenesis of TDP-43 proteinopathies.This article has an associated First Person interview with the first author of the paper.The interaction of host cells with mycobacteria is complex and can lead to multiple outcomes ranging from bacterial clearance to progressive or latent infection. Autophagy is recognized as one component of host cell responses that has an essential role in innate and adaptive immunity to intracellular bacteria. Many microbes, including Mycobacterium tuberculosis, have evolved to evade or exploit autophagy, but the precise mechanisms and virulence factors are mostly unknown. Through a loss-of-function screening of an M. tuberculosis transposon mutant library, we identified 16 genes that contribute to autophagy inhibition, six of which encoded the PE/PPE protein family. Their expression in Mycobacterium smegmatis confirmed that these PE/PPE proteins inhibit autophagy and increase intracellular bacterial persistence or replication in infected cells. These effects were associated with increased mammalian target of rapamycin (mTOR) activity and also with decreased production of tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β). We also confirmed that the targeted deletion of the pe/ppe genes in M. tuberculosis resulted in enhanced autophagy and improved intracellular survival rates compared to those of wild-type bacteria in the infected macrophages. Differential expression of these PE/PPE proteins was observed in response to various stress conditions, suggesting that they may confer advantages to M. tuberculosis by modulating its interactions with host cells under various conditions. Our findings demonstrated that multiple M. tuberculosis PE/PPE proteins are involved in inhibiting autophagy during infection of host phagocytes and may provide strategic targets in developing therapeutics or vaccines against tuberculosis.Escherichia coli O25bH4 sequence type 131 (ST131), which is resistant to fluoroquinolones and which is a producer of CTX-M-15, is globally one of the major extraintestinal pathogenic E. coli (ExPEC) lineages. Phylogenetic analyses showed that multidrug-resistant ST131 strains belong to clade C, which recently emerged from clade B by stepwise evolution. It has been hypothesized that features other than multidrug resistance could contribute to this dissemination since other major global ExPEC lineages (ST73 and ST95) are mostly antibiotic susceptible. To test this hypothesis, we compared early biofilm production, presence of ExPEC virulence factors (VFs), and in vivo virulence in a mouse sepsis model in 19 and 20 epidemiologically relevant strains of clades B and C, respectively. Clade B strains were significantly earlier biofilm producers (P less then 0.001), carriers of more VFs (P = 4e-07), and faster killers of mice (P = 2e-10) than clade C strains. Gene inactivation experiments showed that the H30-fimB and ibeART genes were associated with in vivo virulence. Competition assays in sepsis, gut colonization, and urinary tract infection models between the most anciently diverged strain (B1 subclade), one C1 subclade strain, and a B4 subclade recombining strain harboring some clade C-specific genetic events showed that the B1 strain always outcompeted the C1 strain, whereas the B4 strain outcompeted the C1 strain, depending on the mouse niches. All these findings strongly suggest that clade C evolution includes a progressive loss of virulence involving multiple genes, possibly enhancing overall strain fitness by avoiding severe infections, even if it comes at the cost of a lower colonization ability.
Homepage: https://www.selleckchem.com/products/ms-275.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team