NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Bioinformatics examination associated with microarray files discloses epithelial-mesenchymal-transition inside kid ependymoma.
Research examining institutionalized hierarchy tends to focus on chiefdoms and states, while its emergence among small-scale societies remains poorly understood. learn more Here, we test multiple hypotheses for institutionalized hierarchy, using environmental and social data on 89 hunter-gatherer societies along the Pacific coast of North America. We utilize statistical models capable of identifying the main correlates of sustained political and economic inequality, while controlling for historical and spatial dependence. Our results indicate that the most important predictors relate to spatiotemporal distribution of resources. Specifically, higher reliance on and ownership of clumped aquatic (primarily salmon) versus wild plant resources is associated with greater political-economic inequality, measuring the latter as a composite of internal social ranking, unequal access to food resources, and presence of slavery. Variables indexing population pressure, scalar stress, and intergroup conflict exhibit little or no correlation with variation in inequality. These results are consistent with models positing that hierarchy will emerge when individuals or coalitions (e.g., kin groups) control access to economically defensible, highly clumped resource patches, and use this control to extract benefits from subordinates, such as productive labor and political allegiance in a patron-client system. This evolutionary ecological explanation might illuminate how and why institutionalized hierarchy emerges among many small-scale societies.Honeybee swarms are a landmark example of collective behavior. To become a coherent swarm, bees locate their queen by tracking her pheromones. But how can distant individuals exploit these chemical signals, which decay rapidly in space and time? Here, we combine a behavioral assay with the machine vision detection of organism location and scenting (pheromone propagation via wing fanning) behavior to track the search and aggregation dynamics of the honeybee Apis mellifera L. We find that bees collectively create a scenting-mediated communication network by arranging in a specific spatial distribution where there is a characteristic distance between individuals and directional signaling away from the queen. To better understand such a flow-mediated directional communication strategy, we developed an agent-based model where bee agents obeying simple, local behavioral rules exist in a flow environment in which the chemical signals diffuse and decay. Our model serves as a guide to exploring how physical parameters affect the collective scenting behavior and shows that increased directional bias in scenting leads to a more efficient aggregation process that avoids local equilibrium configurations of isotropic (nondirectional and axisymmetric) communication, such as small bee clusters that persist throughout the simulation. Our results highlight an example of extended classical stigmergy Rather than depositing static information in the environment, individual bees locally sense and globally manipulate the physical fields of chemical concentration and airflow.Spontaneous condensation of excitons is a long-sought phenomenon analogous to the condensation of Cooper pairs in a superconductor. It is expected to occur in a semiconductor at thermodynamic equilibrium if the binding energy of the excitons-electron (e) and hole (h) pairs interacting by Coulomb force-overcomes the band gap, giving rise to a new phase the "excitonic insulator" (EI). Transition metal dichalcogenides are excellent candidates for the EI realization because of reduced Coulomb screening, and indeed a structural phase transition was observed in few-layer systems. However, previous work could not disentangle to which extent the origin of the transition was in the formation of bound excitons or in the softening of a phonon. Here we focus on bulk [Formula see text] and demonstrate theoretically that at high pressure it is prone to the condensation of genuine excitons of finite momentum, whereas the phonon dispersion remains regular. Starting from first-principles many-body perturbation theory, we also predict that the self-consistent electronic charge density of the EI sustains an out-of-plane permanent electric dipole moment with an antiferroelectric texture in the layer plane At the onset of the EI phase, those optical phonons that share the exciton momentum provide a unique Raman fingerprint for the EI formation. Finally, we identify such fingerprint in a Raman feature that was previously observed experimentally, thus providing direct spectroscopic confirmation of an ideal excitonic insulator phase in bulk [Formula see text] above 30 GPa.Most glioblastomas (GBMs) achieve cellular immortality by acquiring a mutation in the telomerase reverse transcriptase (TERT) promoter. TERT promoter mutations create a binding site for a GA binding protein (GABP) transcription factor complex, whose assembly at the promoter is associated with TERT reactivation and telomere maintenance. Here, we demonstrate increased binding of a specific GABPB1L-isoform-containing complex to the mutant TERT promoter. Furthermore, we find that TERT promoter mutant GBM cells, unlike wild-type cells, exhibit a critical near-term dependence on GABPB1L for proliferation, notably also posttumor establishment in vivo. Up-regulation of the protein paralogue GABPB2, which is normally expressed at very low levels, can rescue this dependence. More importantly, when combined with frontline temozolomide (TMZ) chemotherapy, inducible GABPB1L knockdown and the associated TERT reduction led to an impaired DNA damage response that resulted in profoundly reduced growth of intracranial GBM tumors. Together, these findings provide insights into the mechanism of cancer-specific TERT regulation, uncover rapid effects of GABPB1L-mediated TERT suppression in GBM maintenance, and establish GABPB1L inhibition in combination with chemotherapy as a therapeutic strategy for TERT promoter mutant GBM.Antimicrobial resistance (AMR) poses a serious threat to global public health. However, vaccinations have been largely undervalued as a method to hinder AMR progression. This study examined the AMR impact of increasing pneumococcal conjugate vaccine (PCV) coverage in China. China has one of the world's highest rates of antibiotic use and low PCV coverage. We developed an agent-based DREAMR (Dynamic Representation of the Economics of AMR) model to examine the health and economic benefits of slowing AMR against commonly used antibiotics. We simulated PCV coverage, pneumococcal infections, antibiotic use, and AMR accumulation. Four antibiotics to treat pneumococcal diseases (penicillin, amoxicillin, third-generation cephalosporins, and meropenem) were modeled with antibiotic utilization, pharmacokinetics, and pharmacodynamics factored into predicting AMR accumulation. Three PCV coverage scenarios were simulated over 5 y 1) status quo with no change in coverage, 2) scaled coverage increase to 99% in 5 y, and 3) accelerated coverage increase to 85% over 2 y followed by 3 y to reach 99% coverage.
Read More: https://www.selleckchem.com/products/selonsertib-gs-4997.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.