Notes
![]() ![]() Notes - notes.io |
As human-modified landscapes encroach into natural habitats, wildlife face a reduction in natural food sources but also gain access to calorie-rich, human-derived foods. However, research into the energetics of wildlife living within and adjacent to urban and rural landscapes is lacking. C-peptide - a proxy for insulin production and a diagnostic tool for assessing pancreatic function in humans and domestic animals - can be quantified non-invasively from urine (uCP) and may provide a way to investigate the energetic correlates of living in human-altered landscapes. UCP is increasingly used in studies of primate energetics, and here we examine predictors of variation in uCP levels in n = 17 wild chacma baboons (Papio ursinus) living at the urban edge on the Cape Peninsula, South Africa. We find that uCP was positively associated with food provisioning and negatively with night fasting. UCP levels were comparable between winter and summer but significantly lower during spring, possibly driven by consumption of energy-rich seeds during summer and more human-derived foods during winter. UCP was elevated in pregnant females and similar for lactating and cycling females. We find no effect of dominance rank on uCP. Samples collected with synthetic Salivettes had significantly lower uCP levels than directly pipetted samples. Overall, our results indicate that uCP is a reliable, non-invasive measure of energy balance and intake in baboons, and suggest potential energetic benefits of living at the urban edge. More broadly, studies of uCP may offer unique insight into the environmental control of hormone-behaviour relationships in species crossing natural and urban environments.Gonadotropic hormones coordinate processes in diverse tissues regulating animal reproductive physiology and behavior. check details Juvenile hormone (JH) is the ancient and most common gonadotropin in insects, but not in advanced eusocial honey bees and some ants. To start probing the evolutionary basis of this change, we combined endocrine manipulations, transcriptomics, and behavioral analyses to study JH regulated processes in a bumble bee showing a relatively simple level of eusociality. We found that in worker fat body, more JH-regulated genes were up- rather than down-regulated, and enriched for metabolic and biosynthetic pathways. This transcriptomic pattern is consistent with earlier evidence that JH is the major gonadotropin in bumble bees. In the brain, more JH-regulated genes were down- rather than up-regulated and enriched for protein turnover pathways. Brain ribosomal protein gene expression shows a similar trend of downregulation in dominant workers, which naturally have high JH titers. In other species, similar downregulation of protein turnover is found in aging brains or under stress, associated with compromised long-term memory and health. These findings suggest a previously unknown gonadotropin-mediated tradeoff. Analysis of published data reveals no such downregulation of protein turnover pathways in the brain of honey bee workers, which exhibit more complex eusociality and in which JH is not a gonadotropin but rather regulates division of labor. These results suggest that the evolution of complex eusociality in honey bees was associated with modifications in hormonal signalling supporting extended and extremely high fertility while reducing the ancient costs of high gonadotropin titers to the brain.Biological systems are disturbed by several factors that are defined by the exposome. Environmental substances, including endocrine disruptors (EDs), represent the chemical exposome. These stressors may alter biological systems, that could lead to toxic health effects. Even if scientific evidence provide links between diverse environmental substances and disorders, innovative approaches, including alternative methods to animal testing, are still needed to address the complexity of the chemical mechanisms of action. Network science appears to be a valuable approach for helping to decipher a comprehensive assessment of the chemical exposome. A computational protein system-system association network (pS-SAN), based on various data sources such as chemical-protein interactions, chemical-system links, and protein-tissue associations was developed. The integrative systems toxicological model was applied to three EDs, to predict potential biological systems they may perturb. The results revealed that several systems may be disturbed by theses EDs, such as the kidney, liver and endocrine systems. The presented network-based approach highlights an opportunity to shift the paradigm of chemical risk assessment towards a better understanding of chemical toxicology mechanisms.Recent animal and human studies highlight the uncertainty about the onset of an aversive event as a crucial factor for the involvement of the centromedial amygdala (CM) and bed nucleus of the stria terminalis (BNST) activity. However, studies investigating temporally predictable or unpredictable threat anticipation and confrontation processes are rare. Furthermore, the few existing fMRI studies analyzing temporally predictable and unpredictable threat processes used small sample sizes or limited fMRI paradigms. Therefore, we measured functional brain activity in 109 predominantly female healthy participants during a temporally predictable-unpredictable threat paradigm, which aimed to solve limited aspects of recent studies. Results showed higher BNST activity compared to the CM during the cue indicating that the upcoming confrontation is aversive relative to the cue indicating an upcoming neutral confrontation. Both the CM and BNST showed higher activity during the confrontation with unpredictable and aversive stimuli, but the reaction to aversive confrontation relative to neutral confrontation was stronger in the CM compared to the BNST. Additional modulation analyses by NPSR1 rs324981 genotype revealed higher BNST activity relative to the CM in unpredictable anticipation relative to predictable anticipation in T-carriers compared to AA carriers. Our results indicate that during the confrontation with aversive or neutral stimuli, temporal unpredictability modulates CM and BNST activity. Further, there is a differential activity concerning threat processing, as BNST is more involved when focussing on fear-related anticipation processes and CM is more involved when focussing on threat confrontation.
Homepage: https://www.selleckchem.com/products/purmorphamine.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team