Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
The use of misidentified cell lines contaminated by other cell lines and/or microorganisms has generated much confusion in the scientific literature. Detailed characterization of such contaminations is therefore crucial to avoid misinterpretation and ensure robustness and reproducibility of research. Here we use DNA-seq data produced in our lab to first confirm that the Hep2 (clone 2B) cell line (Sigma-Aldrich catalog number 85011412-1VL) is indistinguishable from the HeLa cell line by mapping integrations of the human papillomavirus 18 (HPV18) at their expected loci on chromosome 8. We then show that the cell line is also contaminated by a xenotropic murine leukemia virus (XMLV) that is nearly identical to the mouse Bxv1 provirus and we characterize one Bxv1 provirus, located in the second intron of the pseudouridylate synthase 1 (PUS1) gene. Using an RNA-seq dataset, we confirm the high expression of the E6 and E7 HPV18 oncogenes, show that the entire Bxv1 genome is moderately expressed, and retrieve a Bxv1 splicing event favouring expression of the env gene. Hep2 (clone 2B) is the fourth human cell line so far known to be contaminated by the Bxv1 XMLV. This contamination has to be taken into account when using the cell line in future experiments.Copper microsphere hybrid mesoporous carbon (MPC-Cu) was synthesized by the pyrolysis of polydopamine microspheres doped with copper ions that were prepared using a novel, facile and simple one-step method of dopamine biomimetic polymerization and copper ion adsorption. The resulting MPC-Cu was then used as a supporter for polyethylene glycol (PEG) to synthesize shape-stabilized phase change materials (PEG/MPC-Cu) with enhanced thermal properties. PEG/MPC-Cu was studied by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, thermogravimetric analysis, differential scanning calorimetry and thermal constant analysis. The results demonstrated that the thermal conductivity of PEG/MPC-Cu was 0.502 W/(m K), which increased by 100% compared to pure PEG [0.251 W/(m K)]. The melting enthalpy of PEG/MPC-Cu was 95.98 J/g, indicating that PEG/MPC-Cu is a promising candidate for future thermal energy storage applications. In addition, the characterization results suggested that PEG-MPC-Cu possessed high thermal stability. Therefore, the method developed in this paper for preparing shape-stabilized phase change materials with improved thermal properties has substantial engineering application prospects.Neurobiological basis for cognitive development and psychiatric conditions remains unexplored in children with the FMR1 premutation (PM). Knock-in mouse models of PM revealed defects in embryonic cortical development that may affect cortical folding. Cortical-folding complexity quantified using local gyrification index (LGI) was examined in 61 children (age 8-12 years, 19/14 male/female PM carriers, 15/13 male/female controls). Whole-brain vertex-wise analysis of LGI was performed for group comparisons and correlations with IQ. Individuals with aberrant gyrification in 68 cortical areas were identified using Z-scores of LGI (hyper Z ≥ 2.58, hypo Z ≤ - 2.58). Significant group-by-sex-by-age interaction in LGI was detected in right inferior temporal and fusiform cortices, which correlated negatively with CGG repeat length in the PM carriers. Sixteen PM boys (hyper/hypo 7/9) and 10 PM girls (hyper/hypo 2/5, 3 both) displayed aberrant LGI in 1-17 regions/person while 2 control boys (hyper/hypo 0/2) and 2 control girls (hyper/hypo 1/1) met the same criteria in only 1 region/person. LGI in the precuneus and cingulate cortices correlated positively with IQ scores in PM and control boys while negatively in PM girls and no significant correlation in control girls. These findings reveal aberrant gyrification, which may underlie cognitive performance in children with the PM.Small-angle X-ray scattering (SAXS) techniques enable convenient nanoscopic characterization for various systems and conditions. Unlike synchrotron-based setups, lab-based SAXS systems intrinsically suffer from lower X-ray flux and limited angular resolution. Here, we develop a two-step retrieval methodology to enhance the angular resolution for given experimental conditions. Using minute hardware additions, we show that translating the X-ray detector in subpixel steps and modifying the incoming beam shape results in a set of 2D scattering images, which is sufficient for super-resolution SAXS retrieval. DTNB cost The technique is verified experimentally to show superior resolution. Such advantages have a direct impact on the ability to resolve finer nanoscopic structures and can be implemented in most existing SAXS apparatuses both using synchrotron- and laboratory-based sources.In 2013, recurrent reports of diverse symptoms occurring in girls after receiving HPV vaccination appeared in Japanese media. The Ministry of Health, Labor and Welfare quickly responded by announcing a temporary suspension of its recommendation for the vaccine. The HPV vaccination rate soon fell to almost zero. In the present study, we calculated the potential future numbers of cervical cancer incidence and death that will be increased by this policy decision. We have assumed that the number of yearly vaccinations is evenly distributed across a daily basis. Future incidence and death increased in females born in FY2000 are estimated to be 3651 and 904, respectively, 4566 and 1130 for those born in FY2001, 4645 and 1150 for those born in FY2002, and 4657 and 1153 for those born in FY2003. In FY2020, the large increase of risks to females born in FY2004 amounts to 12.0 females per day who will now be at a higher risk for acquiring of cervical cancer in their future, and 3.0 females per day newly at risk for future death from that disease in its progressive form. No one should be able to accept this situation. We sincerely ask the government to resume its recommendation for the vaccine as soon as possible.A novel triazene-anthracene-based fluorescent aminal linked porous organic polymer (TALPOP) was prepared via metal free-Schiff base polycondensation reaction of 9,10-bis-(4,6-diamino-S-triazin-2-yl)anthracene and 2-furaldehyde. The polymer has exceptional chemical and thermal stabilities and exhibit good porosity with Brunauer-Emmett-Teller surface area of 401 m2g-1. The combination of such porosity along with the highly conjugated heteroatom-rich framework enabled the polymer to exhibit exceptional iodine vapor uptake of up to 314 wt % and reversible iodine adsorption in solution. Because of the inclusion of the anthracene moieties, the TALPOP exhibited excellent detection sensitivity towards iodine via florescence quenching with Ksv value of 2.9 × 103 L mol-1. The cost effective TALPOP along with its high uptake and sensing of iodine, make it an ideal material for environmental remediation.
Here's my website: https://www.selleckchem.com/products/dtnb.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team