NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Wellness reading and writing associated with parents/caregivers involving paediatric operative sufferers: A survey on One thousand individuals.
The relationship between late post-bariatric surgery weight regain and gut microbiota is not completely understood.

To analyze the profile of gut microbiota among patients with and without late weight regain after post-Roux-en-Y gastric bypass (RYGB) and to compare it with a control group (CG) comprised of obese Brazilian individuals.

This is a cross-sectional study which enrolled 34 morbidly obese women divided into 3 groups post-Roux-en-Y gastric bypass without (RYGB_non-regain), and with weight regain (RYGB_regain) at least 5years after surgery, and a CG of preoperative individuals. Gut microbiota was determined by metagenomic analyses.

The alpha diversity was higher in groups RYGB non-regain and RYGB regain when compared with CG (p < 0.05). Both RYGB non-regain and RYGB regain groups showed a lower abundance of the phylum Bacteroidetes when compared with CG (p < 0.01). The genera Bacteroides and SMB53 were increased in CG (p < 0.05). Group RYGB non-regain showed more abundance of the Akkermansia genus when compared with CG and group RYGB regain (p < 0.05). RYGB non-regain showed a greater abundance of the Phascolarctobacterium genus and lower of the SMB53 genus when compared with CG (p < 0.05). RYGB non-regain showed a greater abundance of the Phascolarctobacterium genus and a lower of the SMB53 genus when compared with CG (p < 0.05).

The gut microbiota of individuals which presented late weight regain after RYGB was significantly different in comparison to individuals with a successful weight loss, a finding that points towards a significant role of gut microbiota on weight loss and maintenance after surgery.
The gut microbiota of individuals which presented late weight regain after RYGB was significantly different in comparison to individuals with a successful weight loss, a finding that points towards a significant role of gut microbiota on weight loss and maintenance after surgery.
To evaluate the effectiveness and safety of bariatric surgery in metabolically healthy obese (MHO) patients.

In this retrospective, observational study, we reviewed the medical records of patients who underwent bariatric surgery at a tertiary care hospital between January 2007 and March 2015. Patients who underwent revisional surgery and patients with type 1 diabetes were excluded from the analysis. MHO patients were defined as those without a previous diagnosis of diabetes or atherogenic dyslipidemia and absence of hypoglycemic treatment or treatment with fibrates.

A total of 188 patients were included (mean age 48.97 ± 10.32years, 68.6% of women). Sleeve gastrectomy was performed in 121 patients (64%) and a gastric bypass in 67 patients (36%). Prior to surgery, 36 patients (19%) were MHO. In the second- and third-year post-surgery, MHO patients presented a higher percentage of total weight loss (%TWL) (35.16% vs. Pimagedine 30.34%; p = 0.02 and 33.97% vs. 27.78%; p = 0.013 respectively). Multiple regression analysis showed that MHO was associated with a higher weight loss irrespective of age, sex, baseline BMI, and type of surgery. We did not detect any differences in acute complications between patients with and without MHO after bariatric surgery.

Bariatric surgery in MHO patients in our study was associated with higher weight loss than that in MUHO patients. There were no differences between the two groups in respect to acute complications following surgery.
Bariatric surgery in MHO patients in our study was associated with higher weight loss than that in MUHO patients. There were no differences between the two groups in respect to acute complications following surgery.N-glycan analyses may serve uncovering disease-associated biomarkers, as well as for profiling distinctive changes supporting diagnosis of genetic disorders of glycan biosynthesis named congenital disorders of glycosylation (CDG). Strategies based on liquid chromatography (LC) preferentially coupled to electrospray ionization (ESI) - mass spectrometry (MS) have emerged as powerful analytical methods for N-glycan identification and characterization. To enhance detection sensitivity, glycans are commonly labelled with a functional tag prior to LC-MS analysis. Since most derivatization techniques are notoriously time-consuming, some commercial analytical kits have been developed to speed up N-deglycosylation and N-glycan labelling of glycoproteins of pharmaceutical and biological interest such as monoclonal antibodies (mAbs). We exploited the analytical capabilities of RapiFluor-MS (RFMS) to perform, by a slightly modified protocol, a detailed N-glycan characterization of total serum and single serum glycoproteins from specific patients with CDG (MAN1B1-CDG, ALG12-CDG, MOGS-CDG, TMEM199-CDG). This strategy, accomplished by Hydrophilic Interaction Chromatography (HILIC)-UPLC-ESI-MS separation of the RFMS derivatized N-glycans, allowed us to uncover structural details of patients serum released N-glycans, thus extending the current knowledge on glycan profiles in these individual glycosylation diseases. The applied methodology enabled to differentiate in some cases either structural isomers and isomers differing in the linkage type. All the here reported applications demonstrated that RFMS method, coupled to HILIC-UPLC-ESI-MS, represents a sensitive high throughput approach for serum N-glycome analysis and a valuable option for glycan detection and separation particularly for isomeric species.Apolipoprotein L1 (APOL1) wild type (G0) plays a role in the metabolism of sphingolipids, glycosphingolipids, sphingomyelin and ceramide, which constitute bioactive components of the lipid rafts (DRM). We asked whether APOL1 variants (APOL1-Vs) G1 and G2 carry the potential to alter the metabolism of sphingolipids in human podocytes. The sphingolipid pattern in HPs overexpressing either APOL1G0 or APOL1-Vs was analysed by using a thin mono- and bi-dimensional layer chromatography, mass-spectrometry and metabolic labelling with [1-3H]sphingosine. HP G0 and G1/G2-Vs exhibit a comparable decrease in lactosylceramide and an increase in the globotriaosylceramide content. An analysis of the main glycohydrolases activity involved in glycosphingolipid catabolism showed an overall decrease in the activeness of the tested enzymes, irrespective of the type of APOL1-Vs expression. Similarly, the high throughput cell live-based assay showed a comparable increased action of the plasma membrane glycosphingolipid-glycohydrolases in living cells independent of the genetic APOL1 expression profile.
Website: https://www.selleckchem.com/products/aminoguanidine-hydrochloride.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.