Notes
![]() ![]() Notes - notes.io |
Memory B cell reserves can generate protective antibodies against repeated SARS-CoV-2 infections, but with an unknown reach from original infection to antigenically drifted variants. We charted memory B cell receptor-encoded monoclonal antibodies (mAbs) from 19 COVID-19 convalescent subjects against SARS-CoV-2 spike (S) and found 7 major mAb competition groups against epitopes recurrently targeted across individuals. Inclusion of published and newly determined structures of mAb-S complexes identified corresponding epitopic regions. Group assignment correlated with cross-CoV-reactivity breadth, neutralization potency, and convergent antibody signatures. mAbs that competed for binding the original S isolate bound differentially to S variants, suggesting the protective importance of otherwise-redundant recognition. The results furnish a global atlas of the S-specific memory B cell repertoire and illustrate properties conferring robustness against emerging SARS-CoV-2 variants.The COVID-19 pandemic, caused by SARS-CoV-2 coronavirus, is a global health issue with unprecedented challenges for public health. SARS-CoV-2 primarily infects cells of the respiratory tract, via binding human angiotensin-converting enzyme (ACE2) 1,2 , and infection can result in pneumonia and acute respiratory dist ress syndrome. Circadian rhythms coordinate an organisms response to its environment and recent studies report a role for the circadian clock to regulate host susceptibility to virus infection 3 . Influenza A infection of arhythmic mice, lacking the circadian component BMAL1, results in higher viral replication 4 and elevated inflammatory responses leading to more severe bronchitis 5,6 , highlighting the impact of circadian pathways in respiratory function. We demonstrate circadian regulation of ACE2 in lung epithelial cells and show that silencing BMAL1 or treatment with the synthetic REV-ERB agonist SR9009 reduces ACE2 expression and inhibits SARS-CoV-2 entry and RNA replication. Treating infected cells with SR9009 limits viral replication and secretion of infectious particles, showing that post-entry steps in the viral life cycle are influenced by the circadian system. Our study suggests new approaches to understand and improve therapeutic targeting of COVID-19.The recent rise in mutational variants of SARS-CoV-2, especially with changes in the Spike protein, is of significant concern due to the potential ability for these mutations to increase viral infectivity, virulence and/or ability to escape protective antibodies. Here, we investigated genetic variations in a 414-583 amino acid region of the Spike protein, partially encompassing the ACE2 receptor-binding domain (RBD), across a subset of 570 nasopharyngeal samples isolated between April 2020 and February 2021, from Washington, California, Arizona, Colorado, Minnesota and Illinois. We found that samples isolated since November have an increased number of amino acid mutations in the region, with L452R being the dominant mutation. This mutation is associated with a recently discovered CAL.20C viral variant from clade 20C, lineage B.1.429, that since November-December 2020 is associated with multiple outbreaks and is undergoing massive expansion across California. read more In some samples, however, we found a distinct L452Rptive value to SARS-CoV-2 and, apparently, the positive selection for this mutation became particularly strong only recently, possibly reflecting viral adaptation to the containment measures or increasing population immunity. While the functional impact of L452R has not yet been extensively evaluated, leucine-452 is positioned in the receptor-binding motif of RBD, in the interface of direct contact with the ACE2 receptor. Its replacement with arginine is predicted to result in both a much stronger binding to the receptor and escape from neutralizing antibodies. If true, this in turn might lead to significantly increased infectivity of the L452R variants, warranting their close surveillance and in-depth functional studies.Understanding how SARS-CoV-2 interacts with different mammalian angiotensin-converting enzyme II (ACE2) cell entry receptors will help elucidate determinants of intra- and cross-species virus transmission, facilitate development of effective new vaccines for both humans and livestock animals, and guide livestock farming and coronavirus screening procedures to ensure food supply security. In this work we applied laboratory directed evolution to several mammalian ACE2s with the goal of identifying conserved ACE2 mutations that increase spike binding affinity across multiple species. We found the Gln42Leu mutation increased ACE2-spike binding for human as well as four of four other mammalian ACE2s, while the Leu79Ile mutation had a similar effect for human and three of three mammalian ACE2 orthologs. These results are especially notable given the residues' high levels of representation, i.e, 83% for Gln42 and 56% for Leu79, among annotated mammalian ACE2s. We also found that substitutions at ACE2 position 34, which is relatively variable across mammalian ACE2s, increased binding for multiple ACE2 orthologs. Taken together, these results speak strongly to the plausibility of SARS-CoV-2 strains with increased ability to cross species transmission barriers. Our results can guide further computational and experimental studies to develop biomedical technologies and animal husbandry practices that help protect both humans and livestock from existing and future SARS-CoV-2 variants.Type I interferon (IFN-I) neutralizing autoantibodies have been found in some critical COVID-19 patients; however, their prevalence and longitudinal dynamics across the disease severity scale, and functional effects on circulating leukocytes remain unknown. Here, in 284 COVID-19 patients, we found IFN-I autoantibodies in 19% of critical, 6% of severe and none of the moderate cases. Longitudinal profiling of over 600,000 peripheral blood mononuclear cells using multiplexed single-cell epitope and transcriptome sequencing from 54 COVID-19 patients, 15 non-COVID-19 patients and 11 non-hospitalized healthy controls, revealed a lack of IFN-I stimulated gene (ISG-I) response in myeloid cells from critical cases, including those producing anti-IFN-I autoantibodies. Moreover, surface protein analysis showed an inverse correlation of the inhibitory receptor LAIR-1 with ISG-I expression response early in the disease course. This aberrant ISG-I response in critical patients with and without IFN-I autoantibodies, supports a unifying model for disease pathogenesis involving ISG-I suppression via convergent mechanisms.
Here's my website: https://www.selleckchem.com/products/grl0617.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team