Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Wildtype models were the least preyed upon compared with all other variants, while gray models with distorted bands suffered the greatest predation. The color and the continuous band of the Banded Swallowtail hence confer antipredator qualities. We propose that the shape of the band hinders detection of the butterfly's true shape through coincident disruptive coloration; while the green color of the band prevents detection of the butterfly from its background via differential blending. Differential blending is aided by the green-blue color being due to pigments rather than via structural coloration. Both green and black scales have identical structures, and the scales follow the Bauplan of pigmented scales documented in other Papilio butterflies. © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.Sponges occur across diverse marine biomes and host internal microbial communities that can provide critical ecological functions. While strong patterns of host specificity have been observed consistently in sponge microbiomes, the precise ecological relationships between hosts and their symbiotic microbial communities remain to be fully delineated. In the current study, we investigate the relative roles of host population genetics and biogeography in structuring the microbial communities hosted by the excavating sponge Cliona delitrix. A total of 53 samples, previously used to demarcate the population genetic structure of C. delitrix, were selected from two locations in the Caribbean Sea and from eight locations across the reefs of Florida and the Bahamas. Microbial community diversity and composition were measured using Illumina-based high-throughput sequencing of the 16S rRNA V4 region and related to host population structure and geographic distribution. Most operational taxonomic units (OTUs) specific to Cliona delitrix microbiomes were rare, while other OTUs were shared with congeneric hosts. Across a large regional scale (>1,000 km), geographic distance was associated with considerable variability of the sponge microbiome, suggesting a distance-decay relationship, but little impact over smaller spatial scales ( less then 300 km) was observed. Host population structure had a moderate effect on the structure of these microbial communities, regardless of geographic distance. CH7233163 nmr These results support the interplay between geographic, environmental, and host factors as forces determining the community structure of microbiomes associated with C. delitrix. Moreover, these data suggest that the mechanisms of host regulation can be observed at the population genetic scale, prior to the onset of speciation. © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.Reproduction and related traits such as mating success are strongly affected by thermal stress. We tested direct and correlated responses to artificial selection in replicated lines of Drosophila buzzatii that were selected for mating success at high temperature. Knockdown resistance at high temperature (KRHT) and chill-coma recovery (CCR) were tested as correlated selection responses. Virgin flies were allowed to mate for four hours at 33°C in three replicated lines (S lines) to obtain the selected flies and then returned at 25°C to lay eggs. Other three replicated lines were maintained at 25°C without any selection as control (C lines). After 15 selection generations, KRHT and CCR were measured. Both traits were assessed in flies that did not receive any hardening pretreatments as well as in flies that were either heat or cold hardened. Thermotolerance traits showed significant correlated responses with higher KRHT in S than in C lines, both with a heat-hardening pretreatment and without a heat-hardening pretreatment. CCR time was longer in S than in C lines both with a cold-hardening pretreatment and without a cold-hardening pretreatment. Hardening treatments improved both KRHT and CCR in all cases excepting KRHT in C lines. Overall, KRHT and CCR showed an antagonistic pattern of correlated responses to our selection regime, suggesting either pleiotropy or tightly linked trait-specific genes partially affecting KRHT and CCR. © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.Relating the effects of foraging niche variation to reproductive dynamics is critical to understand species response to environmental change. We examined foraging niche variations of the slender-billed gull (Chroicocephalus genei), a nomadic colonial waterbird species during its range expansion along the French Mediterranean coast over a 16-year period (1998-2013). We investigated whether range expansion was associated with a change in chick diet, breeding success, and chicks body condition. We also examined whether breeding success and chicks body condition were explained by diet and colonial characteristics (number of pairs, laying phenology, habitat, and locality). Diet was characterized using dual-stable isotopic proxies (δ 13C and δ 15N) of feather keratin from 331 individuals subsampled from a total of 4,154 chicks ringed and measured at 18 different colonies. δ 13C decreased and δ 15N increased significantly during range expansion suggesting that chicks were fed from preys of increasing trophic level found in the less salty habitat colonized by the end of the study period. Niche shift occurred without significant change of niche width which did not vary among periods, habitats, or localities either. Breeding success and chick body condition showed no consistent trends over years. Breeding success tended to increase with decreasing δ 13C at the colony level while there was no relationship between stable isotope signatures and chick body condition. Overall, our results suggest that even if range expansion is associated with foraging niche shift toward the colonization of less salty and more brackish habitats, the shift had marginal effect on the breeding parameters of the Slender-billed gull. Niche width appears as an asset of this species, which likely explains its ability to rapidly colonize new locations. © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
Website: https://www.selleckchem.com/products/ch7233163.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team