Notes
![]() ![]() Notes - notes.io |
While structural realism has already been employed in physics or biology, its application as a meta-theory contextualising and relating various scientific findings on consciousness is new indeed. Out of the two variants ontic structural realism (OSR) and epistemic structural realism (ESR), the latter can be considered more suitable for the study of consciousness and its associated neurophysiological phenomena because it removes the pressure of the still unanswered 'What is consciousness?' ontological question and allows us to concentrate instead on the 'What can we know about consciousness?' epistemological question.The popularity of senior-friendly food has been increasing as the world enters the age of an aging society. It is required that senior-friendly food products are processed with the new concept of processing techniques that do not destroy the nutritional and sensory values. Ohmic heating can be an alternative to conventional heating methods for processing senior-friendly food with retaining excellent taste and quality because of less destruction of nutrients in the food. In this study, the ohmic-vacuum combination heating system was developed to process a multiphase type of senior-friendly food. Changes in physical and electrical properties of senior-friendly model foods were investigated depending on the experimental conditions such as vacuum pressure intensity and vacuum pretreatment time. Numerical simulations based on the experimental conditions were performed using COMSOL multiphysics. The ohmic-vacuum combination heating method with agitation reduced the heating time of the model food, and non-uniform temperature distribution in model food was successfully resolved due to the effect of vacuum and agitation. Furthermore, the difference was found in the hardness of solid particles depending on the vacuum treatment time and intensity after the heating treatment. The ohmic-vacuum combination heating system appeared effective when applying for the senior-friendly foods in multiphase form. The simulation results matched reasonably well with the experimental data, and the data predicted through simulation could save the cost and time of experimentation.Zeolite Y is one of the earliest known and most widely used synthetic zeolites. Many experimental investigations verify the valuable ion exchange capability of this zeolite. In this study, we assessed the effects of ion exchange on its vibrational spectra. We applied classical lattice dynamics methods for IR and Raman intensity calculations. Computed spectra of optimized zeolite Y structures with different cations were compared with experimental data. The spectra obtained in this study are in agreement with previous experimental and computational studies on zeolites from the faujasite group.Growth hormone (GH) is secreted by the pituitary gland, and in addition to its classical functions of regulating height, protein synthesis, tissue growth, and cell proliferation, GH exerts profound effects on metabolism. In this regard, GH stimulates lipolysis in white adipose tissue and antagonizes insulin's effects on glycemic control. During the last decade, a wide distribution of GH-responsive neurons were identified in numerous brain areas, especially in hypothalamic nuclei, that control metabolism. The specific role of GH action in different neuronal populations is now starting to be uncovered, and so far, it indicates that the brain is an important target of GH for the regulation of food intake, energy expenditure, and glycemia and neuroendocrine changes, particularly in response to different forms of metabolic stress such as glucoprivation, food restriction, and physical exercise. check details The objective of the present review is to summarize the current knowledge about the potential role of GH action in the brain for the regulation of different metabolic aspects. The findings gathered here allow us to suggest that GH represents a hormonal factor that conveys homeostatic information to the brain to produce metabolic adjustments in order to promote energy homeostasis.Increase of inbreeding and loss of genetic diversity have large impact on farm animal genetic resources. Therefore, the aims of the present study were to analyse measures of genetic diversity as well as recent and ancestral inbreeding using pedigree data of the German Brown population, and to identify causes for loss of genetic diversity. The reference population included 922,333 German Brown animals born from 1990 to 2014. Pedigree depth and completeness reached an average number of complete equivalent generations of 6.24. Estimated effective population size for the German Brown reference population was about 112 with a declining trend from 141 to 95 for the birth years. Individual inbreeding coefficients increased from 0.013 to 0.036. Effective number of founders, ancestors and founder genomes of 63.6, 36.23 and 20.34 indicated unequal contributions to the reference population. Thirteen ancestors explained 50% of the genetic diversity. Higher breed proportions of US Brown Swiss were associated with higher levels of individual inbreeding. Ancestral inbreeding coefficients, which are indicative for exposure of ancestors to identical-by-descent alleles, increased with birth years but recent individual inbreeding was higher than ancestral inbreeding. Given the increase of inbreeding and decline of effective population size, measures to decrease rate of inbreeding and increase effective population size through employment of a larger number of sires are advisable.The targeted local delivery of anticancer therapeutics offers an alternative to systemic chemotherapy for oral cancers not amenable to surgical excision. However, epithelial barrier function can pose a challenge to their passive topical delivery. The charged, deformable liposomes-"iontosomes"-described here are able to overcome the buccal mucosal barrier via a combination of the electrical potential gradient imposed by iontophoresis and their shape-deforming characteristics. Two chemotherapeutic agents with very different physicochemical properties, cisplatin (CDDP) and docetaxel (DTX), were co-encapsulated in cationic iontosomes comprising 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and Lipoid-S75. The entrapment of CDDP was improved by formulating it in anionic reverse micelles of dipalmitoyl-sn-glycero-3-phospho-rac-glycerol sodium (DPPG) prior to loading in the iontosomes. Cryo-TEM imaging clearly demonstrated the iontosomes' electroresponsive shape-deformable properties. The in vitro transport study using porcine mucosa indicated that iontosomes did not enter the mucosa without an external driving force.
Homepage: https://www.selleckchem.com/products/navoximod.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team