Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
In this work we present the implementation of a variational density fitting methodology that uses iterative linear algebra for solving the associated system of linear equations. It is well known that most difficulties with this system arise from the fact that the coefficient matrix is in general ill-conditioned and, due to finite precision round-off errors, it may not be positive definite. The dimensionality, given by the number of auxiliary functions, also poses a challenge in terms of memory and time demand since the coefficient matrix is dense. The methodology presented is based on a preconditioned Krylov subspace method able to deal with indefinite ill-conditioned equation systems. To assess its potential it has been combined with double asymptotic electron repulsion integral expansions as implemented in the deMon2k package. A numerical study on a set of problems with up to 130,000 auxiliary functions shows its effectiveness to alleviate the above mentioned problematic. A comparison with the default methodology used in deMon2k, based on a truncated eigenvalue decomposition of the coefficient matrix, indicates that the proposed method exhibits excellent robustness and scalability when implemented in a parallel setting.Arsenic trioxide (ATO) is a therapeutic agent used to treat acute promyelocytic leukemia (APL), a disease caused by a chromosomal translocation of the retinoic acid receptor α (RARα) gene that can occur reciprocally with the promyelocytic leukemia (PML) gene. The mechanisms through which ATO exerts its effects on cells are not fully characterized though they involve the SUMOylation, the ubiquitylation, and the degradation of the PML/RARα oncoprotein through the PML moiety. To better understand the mechanisms that underlie the cytotoxicity induced with increasing ATO levels, we profiled the changes in protein SUMOylation, phosphorylation, and ubiquitylation on HEK293 cells following exposure to low (1 μM) or elevated (10 μM) ATO for 4 h. Our analyses revealed that a low dose of ATO resulted in the differential modification of selected substrates including the SUMOylation (K380, K394, K490, and K497) and ubiquitylation (K337, K401) of PML. These experiments also highlighted a number of unexpected SUMOylated substrates involved in DNA damage response (e.g., PCNA, YY1, and poly[ADP-ribose] polymerase 1 (PARP1)) and messenger RNA (mRNA) splicing (e.g., ACIN1, USP39, and SART1) that were regulated at higher ATO concentrations. Interestingly, additional enzymatic assays revealed that SUMOylation of PARP1 impeded its proteolytic cleavage by caspase-3, suggesting that SUMOylation could have a protective role in delaying cell apoptosis.There is a strong demand for developing tunable and facile routes for synthesizing gas-sensitive semiconducting compounds. The concept of synthesizing micro- and nanoparticles of metallic compounds in a tunable process, which relies on liquid metals, is presented here. This is a liquid-based ultrasonication procedure within which additional metallic elements (In, Sn, and Zn) are incorporated into liquid Ga that is sonicated in a secondary solvent. We investigate liquid metal sonication in dimethyl sulfoxide (DMSO) and water to show their impact on the size, morphology, and crystal structure of the particulated products. The synthesized materials are annealed to investigate their responses to model reducing (H2) and oxidizing (NO2) gas species. The preparation process in DMSO gives rise to predominantly monoclinic Ga2O3 crystals which are favorable for gas sensing, while the emergence of rhombohedral Ga2O3 phases from the water sonication process led to inactive samples. The ease of tunability without hazardous precursors during the synthesis procedure is demonstrated. selleck chemicals The route presented here can be uniquely employed for designing and engineering on-demand functional materials for sensing applications.Bacterial ice-nucleating proteins (INPs) promote heterogeneous ice nucleation more efficiently than any other material. The details of their working mechanism remain elusive, but their high activity has been shown to involve the formation of functional INP aggregates. Here we reveal the importance of electrostatic interactions for the activity of INPs from the bacterium Pseudomonas syringae by combining a high-throughput ice nucleation assay with surface-specific sum-frequency generation spectroscopy. We determined the charge state of nonviable P. syringae as a function of pH by monitoring the degree of alignment of the interfacial water molecules and the corresponding ice nucleation activity. The net charge correlates with the ice nucleation activity of the INP aggregates, which is minimal at the isoelectric point. In contrast, the activity of INP monomers is less affected by pH changes. We conclude that electrostatic interactions play an essential role in the formation of the highly efficient functionally aligned INP aggregates, providing a mechanism for promoting aggregation under conditions of stress that prompt the bacteria to nucleate ice.We report a biocatalytic platform of engineered cytochrome P450 enzymes to carry out efficient cyclopropene synthesis via carbene transfer to internal alkynes. Directed evolution of a serine-ligated P450 variant, P411-C10, yielded a lineage of engineered P411 enzymes that together accommodate a variety of internal aromatic alkynes as substrates for cyclopropenation with unprecedented efficiencies and stereoselectivities (up to 5760 TTN, and all with >99.9% ee). Using an internal aliphatic alkyne bearing a propargylic ether group, different P411 variants can selectively catalyze cyclopropene formation, carbene insertion into a propargylic C‒H bond or [3+2]-cycloaddition. This tunable reaction selectivity further highlights the benefit of using genetically-encoded catalysts to address chemoselectivity challenges.The reductive coupling of alcohols using vanadium pyridonate catalysts is reported. This attractive approach for C(sp3)-C(sp3) bond formation uses an oxophilic, earth-abundant metal for a catalytic deoxygenation reaction. Several pyridonate complexes of vanadium were synthesized, giving insight into the coordination chemistry of this understudied class of compounds. Isolated intermediates provide experimental mechanistic evidence that complements reported computational mechanistic proposals for the reductive coupling of alcohols. In contrast to previous mononuclear vanadium(V)/vanadium(III)/vanadium(IV) cycles, this pyridonate catalyst system is proposed to proceed by a vanadium(III)/vanadium(IV) cycle involving bimetallic intermediates.
My Website: https://www.selleckchem.com/
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team