NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Sensitized bronchopulmonary aspergillosis inside a individual together with ankylosing spondylitis treated with adalimumab.
In this Letter, we report a titanium nitride (Ti4N3Tx) passive Q-switched ErLu2O3 laser. The homemade two-dimensional Ti4N3Tx saturable absorber shows excellent passive Q-switching performance around a 2.85 µm wavelength region. Under the absorbed pump power of 7.4 W, the passive Q-switching laser yields a maximum output power of 0.778 W at a pulse repetition rate of 113.7 kHz, corresponding to a single pulse energy of 6.84 µJ and peak power of 24.57 W.We present one-dimensional (1-D) imaging of rotation-vibration non-equilibrium measured by two-beam pure rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS). Simultaneous measurements of the spatial distribution of molecular rotation-vibration non-equilibrium are critical for understanding molecular energy transfer in low temperature plasmas and hypersonic flows. However, non-equilibrium CARS thermometry until now was limited to point measurements. The red shift of rotational energy levels by vibrational excitation was used to determine the rotational and vibrational temperatures from 1-D images of the pure rotational spectrum. Vibrational temperatures up to 5500 K were detected in a CH4/N2 nanosecond-pulsed pin-to-pin plasma within 2 mm near the cathode. This approach enables study of non-equilibrium systems with 40 µm spatial resolution.Ultraviolet microdisk lasers are integrated monolithically into photonic circuits using a III-nitride-on-silicon platform with gallium nitride (GaN) as the main waveguide layer. The photonic circuits consist of a microdisk and a pulley waveguide, terminated by out-coupling gratings. In this Letter, we measure quality factors up to 3500 under continuous-wave excitation. Lasing is observed from 374 to 399 nm under pulsed excitation, achieving low-threshold energies of 0.14mJ/cm2 per pulse (threshold peak powers of 35kW/cm2). A large peak-to-background dynamic of around 200 is observed at the out-coupling grating for small gaps of 50 nm between the disk and the waveguide. These devices operate at the limit of what can be achieved with GaN in terms of operation wavelength.The exact analytical solution of Maxwell equations for a Bessel light beam scattered by a sphere is found. Scattered power, stored energy, and a generalized Q factor as a function of frequency, the sphere radius, permittivity, and the Bessel beam angle are found. On the basis of this solution, modes and pseudo-modes of a dielectric sphere are extracted by calculation of the generalized Q factor. AG-270 It is shown that an appropriate choice of Bessel beam parameters can provide excitation of a single given mode and an unlimited value of the radiative Q factor of pseudo-modes.Due to their high circulating intensities, ultra-high quality factor dielectric whispering gallery mode resonators have enabled the development of low threshold Raman microlasers. Subsequently, other Raman-related phenomena, such as cascaded stimulated Raman scattering (CSRS) and stimulated anti-Stokes Raman scattering (SARS), were observed. While low threshold frequency conversion and generation have clear applications, CSRS and SARS have been limited by the low Raman gain. In this work, the surface of a silica resonator is modified with an organic monolayer, increasing the Raman gain. Up to four orders of CSRS are observed with sub-milliwatt (mW) input power, and the SARS efficiency is improved by three orders of magnitude compared to previous studies with hybrid resonators.We present a novel, to the best of our knowledge, Hartmann wave front sensor for extreme ultraviolet (EUV) spectral range with a numerical aperture (NA) of 0.15. The sensor has been calibrated using an EUV radiation source based on gas high harmonic generation. The calibration, together with simulation results, shows an accuracy beyond λ/39 root mean square (rms) at λ=32nm. The sensor is suitable for wave front measurement in the 10 nm to 45 nm spectral regime. This compact wave front sensor is high-vacuum compatible and designed for in situ operations, allowing wide applications for up-to-date EUV sources or high-NA EUV optics.We present a study of optical modulation by the effect of temperature-induced insulator-to-metal phase transition of vanadium dioxide (VO2) nanocrystals deposited in an antiresonance hollow-core fiber (AR-HCF). We fabricate such a VO2-coated fiber by embedding alkylsilane functionalized VO2 nanocrystals into the air holes of an AR-HCF. With this fiber, we achieve an optical loss modulation of ∼60% at a temperature above ∼53∘C over an ultrabroad spectral range that encompasses the S+C+L band.A compact sub-kilohertz linewidth Brillouin random fiber laser (BRFL) based on a linear cavity scheme with single-end pumping and enhanced distributed Rayleigh feedback from fiber random gratings (FRGs) is proposed and demonstrated. The improved FRGs with low transmission loss make the single-end pumped linear cavity configuration achievable without sacrificing the lasing capability, which contributes to a more compact setup for easy integration and packaging. The enhanced Rayleigh feedback from the FRG enables a high-efficiency random lasing resonance of the Stokes wave via stimulated Brillouin scattering in the lasing cavity. More importantly, the single-end pumped scheme, unlike the previously reported bi-directionally pumped BRFL, significantly alleviates the lasing instabilities and noises induced by the counter-propagating laser beams through the Brillouin-active medium, thus exhibiting lower lasing noises. Single-longitudinal-mode operation of the proposed random laser is realized with a narrow linewidth of ∼0.97kHz.We report on a macroscopic fluorescence lifetime imaging (MFLI) topography computational framework based around machine learning with the main goal of retrieving the depth of fluorescent inclusions deeply seated in bio-tissues. This approach leverages the depth-resolved information inherent to time-resolved fluorescence data sets coupled with the retrieval of in situ optical properties as obtained via spatial frequency domain imaging (SFDI). Specifically, a Siamese network architecture is proposed with optical properties (OPs) and time-resolved fluorescence decays as input followed by simultaneous retrieval of lifetime maps and depth profiles. We validate our approach using comprehensive in silico data sets as well as with a phantom experiment. Overall, our results demonstrate that our approach can retrieve the depth of fluorescence inclusions, especially when coupled with optical properties estimation, with high accuracy. We expect the presented computational approach to find great utility in applications such as optical-guided surgery.
Website: https://www.selleckchem.com/products/ag-270.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.