Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Graphene oxide (GO), due to its properties, such as nanometric dimensions, large specific surface area, and biocompatibility, can be used as a carrier in controlled drug release systems. The method of its chemical activation before drug molecules binding was elaborated. Doxorubicin (DOX), an anticancer drug, was attached to the surface of GO via the Gly-Gly-Leu linker. Approximately 3.07 · 1020 molecules of the tripeptide were attached to 1 g of GO and subsequently almost the same number of DOX molecules. GO was suspended inside a sol surrounded by a thin porous membrane. The bound DOX was effectively released using thermolysin, an enzyme cleaving peptide bonds between Gly and Leu inside the linker structure. The membrane, as the shell was responsible for keeping enzyme molecules in their native form and GO flakes inside the carrier, simultaneously allowed the released drug molecules to diffuse outside. The rate of drug release was described as a function of the enzyme concentration and mass of DOX expressed on carrier volume; thus, the daily dose and length of the therapy can be controlled. Studies involving the cell line of mice fibrosarcoma WEHI 164 have shown that the prepared carrier itself is not toxic and only the introduction of DOX-releasing enzyme into it causes cell death.Organic-inorganic hybrid coatings deposited on different types of metallic alloys have shown outstanding anticorrosive performance. The incorporation of osteoconductive additives such as hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) into organic-inorganic hybrid coatings is promising to improve the osseointegration and corrosion resistance of Ti6Al4V alloys, which are the most widely used metallic orthopedic and dental implant materials today. Therefore, this study evaluated the capability of poly(methyl methacrylate) (PMMA)-TiO2 and PMMA-ZrO2 hybrid coatings modified with HA and β-TCP to act as bioactive and corrosion protection coatings for Ti6Al4V alloys. In terms of cell growth and mineralization, osteoblast viability, Ca+2 deposition and alkaline phosphatase assays revealed a significant improvement for the HA and β-TCP modified coatings, compared to the bare alloy. This can be explained by an increase in nanoscale roughness and associated higher surface free energy, which lead to enhanced protein adsorption to promote osteoblast attachment and functions on the coatings. The effect of HA and β-TCP additives on the anticorrosive efficiency was studied by electrochemical impedance spectroscopy (EIS) in a simulated body fluid (SBF) solution. The coatings presented a low-frequency impedance modulus of up to 430 GΩ cm2, 5 decades higher than the bare Ti6Al4V alloy. These findings provide clear evidence of the beneficial role of HA and β-TCP modified hybrid coatings, improving both the biocompatibility and corrosion resistance of the Ti6Al4V alloy.Exclusive magnetocaloric properties of orthoferrites offer advantages for their application in the magnetic hyperthermia as well as imaging applications. In the present study, the effect of yttrium concentration on the magnetic characteristics of the iron oxide based nanomaterials was analyzed to assess their potential for the hyperthermia applications. The Sol-gel method was used to synthesize the Yttrium Iron Garnet (YIG) based nanoparticles, using different molar ratios of Fe and Y precursors, followed by the calcination at 900, 1000 and 1100 °C. XRD analysis determined the formation of the pure phase of yttrium iron garnet Y3Fe5O12 (YIG) at 0.5 molar ratio of yttrium at all the calcination temperatures and pure phase of yttrium iron perovskite YFeO3 (YIP) for 1 molar ratio of yttrium at 1000 and 1100 °C. The mean particle size was observed in the range of 100 to 400 nm. The magnetic characterization studies showed the highest saturation magnetization for the sample containing 0.5 molar ratio of the yttrium calcinated at 1000 °C. The magnetization values were linearly related to the contents of YIG phases in the synthesized samples. Induction heating of YIG resulted in the hyperthermia temperature (42 to 44 °C) in 13 min with the SAR values 114.65 W/g at 1 mg/ml. The prepared samples showed no in-vitro toxic effects on the MG63 cells (>90% cell viability). In addition, in-vitro treatment at hyperthermia temperature for 15 min reduced cell viability of cancer cells (A549) to 55%, while no toxic effect was observed on MG 63 cells. The present study postulates Yttrium Iron Garnet as an effective therapeutic agent for hyperthermia cancer treatment.Kyphoplasty is an effective minimally invasive surgical treatment of osteoporotic vertebral compression fractures. Current problems associated with kyphoplasty require better injectable bone cements with improved biodegradability and osseointegrative property as an alternative to polymethyl methacrylate (PMMA) bone cement. Calcium phosphate cements (CPCs) possess superior biodegradability and osteoconductivity but inferior injectability and mechanical strengths, rendering them unsuitable for kyphoplasty applications. Our previous studies developed a corn starch-reinforced CPC with improved handling, injectable and mechanical properties, yet for kyphoplasty applications the reinforced CPC needs to have radiopacity and further enhanced mechanical strength. This work therefore developed a CPC-Starch-BaSO4 (CSB) system and investigated the effects of radiopaque agent BaSO4 on injectability, radiopacity, mechanical and biocompatibility properties of the system. Results showed that the addition of BaSO4 significantly improved radiopacity and mechanical strengths of CPC cement. In addition, in vitro evaluations including apoptosis, hemolysis and endotoxin tests and in vivo evaluation of subcutaneous implantation all revealed that CSB was biocompatible. This study demonstrates that CSB could meet the clinical requirements for minimally invasive surgery and thus have great potential for kyphoplasty applications.The multi-drug resistance (MDR) is the leading reason resulting in the failure of cancer treatment. Decreasing the development chance of MDR and fighting against the MDR cancer are still facing severe challenges. In order to overcome MDR via disrupting the original metabolic pathway of cancer cells, we designed a multi-functionalized nano-conjugate based on the starvation therapy to make cancer cells availably sensitized to chemotherapy. selleck compound The nano-conjugate constitutes of the nano-carrier (AuNP-PEG-RGD) and glucose oxidase (GOx, activity equivalent), which not only can specifically target cancer cells with the help of the cancer-targeting peptide (RGD) laid on the surface, but also can deplete glucose and O2 with the simultaneous generation of H2O2. Insufficient glucose, excess H2O2, and hypoxia microenvironments can suppress cell proliferation and induce cell apoptosis. With the hypothesis that the specific damage induced by the nano-conjugate can make cancer cells much vulnerable to chemotherapy, we further evaluated the therapeutic effect of an anti-cancer drug (doxorubicin, Dox) with the assistance of the low dose of nano-conjugate for the breast cancer cell.
Read More: https://www.selleckchem.com/products/pf-3644022.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team