Notes
![]() ![]() Notes - notes.io |
Mechanistically, GABPB1-AS1 acted as a competing endogenous RNA (ceRNA) by sponging miR-519e-5p, resulting in the de-repression of its target gene Notch2 which is well known as an oncogene. Therefore, GABPB1-AS1 functioned as a tumor activator in CC pathogenesis by binding to miR-519e-5p and destroying its tumor suppressive function. Collectively, current results demonstrate that GABPB1-AS1 is associated with CC progression, and may be a promising biomarker or target for the clinical management of CC.
To investigate the impact of promising a referral bonus and an autonomous referral request on nurses' referral likelihood and the quality of their referrals.
We applied a 2×2 between-participants factorial design with referral bonus and autonomous referral request as experimental variables.
In May 2019, 110 nurses working in Belgian hospitals were shown a fictitious e-mail with a request from their employer to look for potential new-hires and filled out an online survey measuring referral likelihood and quality.
Promising a referral bonus did not affect nurses' referral likelihood and quality. Instead supporting self-determination theory, nurses exposed to the autonomous request were more likely to refer and assure referral quality than those exposed to the controlling request.
Hospitals can increase nurses' referral likelihood and quality by framing their referral request in an autonomy-supportive way.
Recruiting nurses are more important than ever in the current Covid-19 crisis. Our findings offer practical insights on how hospitals can engage their employees in the recruitment of nurses (i.e. through framing referral requests in an autonomy-supportive way).
Recruiting nurses are more important than ever in the current Covid-19 crisis. Our findings offer practical insights on how hospitals can engage their employees in the recruitment of nurses (i.e. through framing referral requests in an autonomy-supportive way).The metallic tin (Sn) anode is a promising candidate for next-generation lithium-ion batteries (LIBs) due to its high theoretical capacity and electrical conductivity. However, Sn suffers from severe mechanical degradation caused by large volume changes during lithiation/delithiation, which leads to a rapid capacity decay for LIBs application. Herein, a Cu-Sn (e.g., Cu3 Sn) intermetallic coating layer (ICL) is rationally designed to stabilize Sn through a structural reconstruction mechanism. The low activity of the Cu-Sn ICL against lithiation/delithiation enables the gradual separation of the metallic Cu phase from the Cu-Sn ICL, which provides a regulatable and appropriate distribution of Cu to buffer volume change of Sn anode. Concurrently, the homogeneous distribution of the separated Sn together with Cu promotes uniform lithiation/delithiation, mitigating the internal stress. In addition, the residual rigid Cu-Sn intermetallic shows terrific mechanical integrity that resists the plastic deformation during the lithiation/delithiation. As a result, the Sn anode enhanced by the Cu-Sn ICL shows a significant improvement in cycling stability with a dramatically reduced capacity decay rate of 0.03% per cycle for 1000 cycles. The structural reconstruction mechanism in this work shines a light on new materials and structural design that can stabilize high-performance and high-volume-change electrodes for rechargeable batteries and beyond.
In clinical practice, 1% atropine and 1% cyclopentolate are used as cycloplegia agents to diagnose refractive error. The influence of 1% atropine on ocular biometry is obscure, and the impact of 1% cyclopentolate remains controversial.
This study aims to compare the effects of atropine versus cyclopentolate cycloplegia on ocular biometry in myopic children and to determine the sites of action for atropine.
A total of 207 myopic children aged 6-12-years were included in the analysis. All participants underwent comprehensive eye examinations before and after cyclopentolate cycloplegia, after which they were randomly assigned into two groups, A and B, in a ratio of 11, to receive 1% or 0.01% atropine, respectively. The treatment was administered once every night for a week. Participants were re-examined one week later.
Cyclopentolate cycloplegia caused a decrease in choroidal thickness (-3 ± 9 μm, p = 0.001), elongation of axial length (9 ± 16 μm, p < 0.001), loss of lens power (-0.14 ± 0.37 dioptre, gia and 0.01% atropine resulted in choroidal thickening, indicating that the choroid may be a site of action for atropine.Visuomotor rotations are frequently used to study the different processes underlying motor adaptation. Explicit aiming strategies and implicit recalibration are two of these processes. Various methods, which differ in their underlying assumptions, have been used to dissociate the two processes. Direct methods, such as verbal reports, assume explicit knowledge to be verbalizable, where indirect methods, such as the exclusion, assume that explicit knowledge is controllable. The goal of this study was thus to directly compare verbal reporting with exclusion in two different conditions during consistent reporting and during intermittent reporting. Our results show that our two conditions lead to a dissociation between the measures. In the consistent reporting group, all measures showed similar results. However, in the intermittent reporting group, verbal reporting showed more explicit re-aiming and less implicit adaptation than exclusion. Curiously, when exclusion was measured again, after the end of learning, the differences were no longer apparent. We suspect this may reflect selective decay in implicit adaptation, as has been reported previously. FSEN1 cost All told, our results clearly indicate that methods of measurement can affect the amount of explicit re-aiming and implicit adaptation that is measured. Since it has been previously shown that both explicit re-aiming and implicit adaptation have multiple components, discrepancies between these different methods may arise because different measures reflect different components.We report three cases of severe hypertrichosis in healthy infants, who did not present any type of endocrinological pathology and whose parents used topical minoxidil for the treatment of their baldness. Any type of direct application or administration of the product was ruled out. Hypertrichosis is considered to have occurred through skin-to-skin contact with the parent, and even through fomites. Given the widespread use of topical minoxidil, it is likely that this etiology of childhood hypertrichosis is underdiagnosed and that it sometimes leads to minimal forms that go unnoticed.
Website: https://www.selleckchem.com/products/fsen1.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team