Notes
![]() ![]() Notes - notes.io |
We constantly process top-down and bottom-up inputs concerning our own body that interact to form body representations (BR). Even if some evidence showed BR deficits in children with cerebral palsy, a systematic study that evaluates different kinds of BR in these children, taking into account the possible presence of a general deficit affecting non-body mental representations, is currently lacking. Here we aimed at investigating BR (i.e., Body Semantics, Body Structural Representation and Body Schema) in children with cerebral palsy (CP) taking into account performance in tasks involving body stimuli and performance in tasks involving non-body stimuli. Thirty-three CP (age range 5-12 years) were compared with a group of 103 typically-developing children (TDC), matched for age and sex. 63.64% of children with CP showed a very poor performance in body representation processing. Present data also show alterations in different body representations in CP in specific developmental stages. In particular, CP and TDC performances did not differ between 5 to 7 years old, whereas CP between 8 and 12 years old showed deficits in the Body Structural Representation and Body Schema but not in Body Semantics. These findings revealed the importance of taking into account the overall development of cognitive domains when investigating specific stimuli processing in children who do not present a typical development and were discussed in terms of their clinical implications.Primary ciliary dyskinesia (PCD) is a disorder that affects motile cilia in the airway that are required for the removal of mucus, debris, and pathogens. It is important to diagnose PCD in early childhood to preserve lung function. The confirmation of a diagnosis relies on the assessment of ciliary ultrastructure by transmission electron microscopy (TEM). TEM involves the quantitative assessment of the ciliary ultrastructure to identify PCD defects as well as abnormalities resulting from infection. Many specialist diagnostic centres still rely on physical counters to tally results and paper notes to summarise findings before transferring the results to computer databases/records. To speed up the diagnostic data collection and increase the protection of patient information, we have developed digital ciliary feature counters that conform to the PCD reporting international consensus guideline. These counters can be used on a computer or tablet, and automatically generate notes regarding sample observations. We show that the digital counters are easy to use and can generate TEM diagnostic reports that will be useful for many PCD diagnostic centres.Root transcriptomic profile was comparatively studied in a serpentine (TM) and a non-metallicolous (NTM) population of Noccaea goesingensis in order to investigate possible features of Ni hyperaccumulation. Both populations were characterised by contrasting Ni tolerance and accumulation capacity. The growth of the TM population was unaffected by metal excess, while the shoot biomass production in the NTM population was significantly lower in the presence of Ni in the culture medium. Nickel concentration was nearly six- and two-fold higher in the shoots than in the roots of the TM and NTM population, respectively. The comparison of root transcriptomes using the RNA-seq method indicated distinct responses to Ni treatment between tested ecotypes. Among differentially expressed genes, the expression of IRT1 and IRT2, encoding metal transporters, was upregulated in the TM population and downregulated/unchanged in the NTM ecotype. Furthermore, differences were observed among ethylene metabolism and response related genes. In the TM population, the expression of genes including ACS7, ACO5, ERF104 and ERF105 was upregulated, while in the NTM population, expression of these genes remained unchanged, thus suggesting a possible regulatory role of this hormone in Ni hyperaccumulation. The present results could serve as a starting point for further studies concerning the plant mechanisms responsible for Ni tolerance and accumulation.Children from out-of-home care are a vulnerable population that faces high stress and anxiety levels due to stressful experiences, such as being abused, being raped, and violence. This problem could have negative effects on their bio-psycho-social well-being if they are not provided with comprehensive psychological treatment. Numerous methods have been developed to help them relax, but there are no current approaches for assessing the relaxation level they reach. Based on this, a novel smart sensor that can evaluate the level of relaxation a child experiences is developed in this paper. It evaluates changes in thermal biomarkers (forehead, right and left cheek, chin, and maxillary) and heart rate (HR). Then, through a k-nearest neighbors (K-NN) intelligent classifier, four possible levels of relaxation can be obtained no-relax, low-relax, relax, and very-relax. Additionally, an application (called i-CARE) for anxiety management, which is based on biofeedback diaphragmatic breathing, guided imagery, and video games, is evaluated. After testing the developed smart sensor, an 89.7% accuracy is obtained. The smart sensor used provides a reliable measurement of relaxation levels and the i-CARE application is effective for anxiety management, both of which are focused on children exposed to out-of-home care conditions.Saccharomyces cerevisiae was used as a model to explore the preventive effect of two marine polysaccharides separately derived from Sepia esculenta ink (SIP) and Laminaria japonica (FL) as well as one terrestrial polysaccharides from Eleocharis tuberosa peel (WCPP) on toxic injury induced by acrylamide (AA). The growth of yeast was evaluated by kinetics indexes including doubling time, lag phase and maximum proliferation density. Meanwhile, intracellular redox state was determined by contents of MDA and GSH, and SOD activity. The results showed that AA inhibited yeast growth and destroyed the antioxidant defense system. Supplement with polysaccharides, the oxidative damage of cells was alleviated. According to the growth recovery of yeast, FL and WCPP had similar degree of capacity against AA associated cytotoxicity, while SIP was 1.5~2 folds as strong as FL and WCPP. selleck products SIP and FL significantly reduced production of MDA by AA administration. Moreover, SIP, FL and WCPP increased SOD activity and repressed GSH depletion caused by AA.
Homepage: https://www.selleckchem.com/products/pifithrin-alpha.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team