Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
The novelty of the presented solution lies in several features, including the possibility of performing automatic measurements and compensating the results due to temperature effects. The article describes the sensor's design, including the concept of a thermal compensation system and example results from laboratory tests, where the sensor's performance was investigated in a dual-zone thermal chamber. Finally, the sensor was installed within the field conditions under an embankment constructed above the improved substrate. Example results verified by reference distributed fiber optic technique are presented and discussed hereafter, raising high prospects in the context of possible structural health monitoring applications of the new solution.The three-dimensional (3D) size and morphology of high-temperature metal components need to be measured in real time during manufacturing processes, such as forging and rolling. Since the surface temperature of a metal component is very high during the forming and manufacturing process, manually measuring the size of a metal component at a close distance is difficult; hence, a non-contact measurement technology is required to complete the measurement. Recently, machine vision technology has been developed, which is a non-contact measurement technology that only needs to capture multiple images of a measured object to obtain the 3D size and morphology information, and this technology can be used in some extreme conditions. Selleck BTK inhibitor Machine vision technology has been widely used in industrial, agricultural, military and other fields, especially fields involving various high-temperature metal components. This paper provides a comprehensive review of the application of machine vision technology in measuring the 3D size and morphology of high-temperature metal components. Furthermore, according to the principle and method of measuring equipment structures, this review highlights two aspects in detail laser scanning measurement and multi-view stereo vision technology. Special attention is paid to each method through comparisons and analyses to provide essential technical references for subsequent researchers.As IoT (Internet of Things) devices are diversified in the fields of use (manufacturing, health, medical, energy, home, automobile, transportation, etc.), it is becoming important to analyze and process data sent and received from IoT devices connected to the Internet. Data collected from IoT devices is highly dependent on secure storage in databases located in cloud environments. However, storing directly in a database located in a cloud environment makes it not only difficult to directly control IoT data, but also does not guarantee the integrity of IoT data due to a number of hazards (error and error handling, security attacks, etc.) that can arise from natural disasters and management neglect. In this paper, we propose an optimized hash processing technique that enables hierarchical distributed processing with an n-bit-size blockchain to minimize the loss of data generated from IoT devices deployed in distributed cloud environments. The proposed technique minimizes IoT data integrity errors as well as strrage over existing techniques. Asymmetric storage speed according to the hash code length of the IoT data block was shown to be 10.3% faster on average than existing techniques. Integrity accuracy of IoT data is improved by 18.3% on average over existing techniques.Due to upcoming higher integration levels of microprocessors, the market of inertial sensors has changed in the last few years. Smart inertial sensors are becoming more and more important. This type of sensor offers the benefit of implementing sensor-processing tasks directly on the sensor hardware. The software development on such sensors is quite challenging. In this article, we propose an approach for using prerecorded sensor data during the development process to test and evaluate the functionality and timing of the sensor firmware in a repeatable and reproducible way on the actual hardware. Our proposed Sensor-in-the-Loop architecture enables the developer to inject sensor data during the debugging process directly into the sensor hardware in real time. As the timing becomes more critical in future smart sensor applications, we investigate the timing behavior of our approach with respect to timing and jitter. The implemented approach can inject data of three 3-DOF sensors at 1.6 kHz. Furthermore, the jitter shown in our proposed sampling method is at least three times lower than using real sensor data. To prove the statistical significance of our experiments, we use a Gage R&R analysis, extended by the assessment of confidence intervals of our data.Smart city networks involve many applications that impose specific Quality of Service (QoS) requirements, thus representing a challenging scenario for network management. Solutions aiming to guarantee QoS support have not been deployed in large-scale networks. Traffic classification is a mechanism used to manage different aspects, including QoS requirements. However, conventional traffic classification methods, such as the port-based method, are inefficient because of their inability to handle dynamic port allocation and encryption. Traffic classification using machine learning has gained research interest as an alternative method to achieve high performance. In fact, machine learning embeds intelligence into network functions, thus improving network management. In this study, we apply machine learning algorithms to predict network traffic classification. We apply four supervised learning algorithms support vector machine, random forest, k-nearest neighbors, and decision tree. We also apply a port-based method of traffic classification based on applications' popular assigned port numbers. Then, we compare the results of this method to those obtained from the machine learning algorithms. The evaluation results indicate that the decision tree algorithm provides the highest average accuracy among the evaluated algorithms, at 99.18%. Moreover, network traffic classification using machine learning provides more accurate results and higher performance than the port-based method.
Here's my website: https://www.selleckchem.com/btk.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team