Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
The control measures also changed the diurnal variations of light absorption. Due to the reduced emissions, the relative fraction of fossil fuel to BC also dropped from 78% in the pre-lockdown to 71% in the lockdown. The concentrations of BC, PM2.5 and NO2 decreased 1.1 μg m-3, 33 μg m-3 and 9.1 ppb whereas O3 concentration increased 9.0 ppb during the COVID-19 lockdown period. The decreased concentrations of BC, PM2.5 and NO2 were mainly contributed by both emission reduction (51-64%) and meteorological conditions (36-49%). Our results highlighted that the balance of control measures in alleviation of particulate matter (PM) and O3 pollution, and meteorology should be seriously considered for improvement of air quality in this urban city of China.Waste animal fats and proteins (WAFP) are rich in various animal by-products from food industries. On one hand, increasing production of huge amounts of WAFP brings a great challenge to their appropriate disposal, and raises severe risks to environment and life health. Selleckchem RRx-001 On the other hand, the high fat and protein contents in these animal wastes are valuable resources which can be reutilized in an eco-friendly and renewable way. Sustainable enzymatic technologies are promising methods for WAFP management. This review discussed the application of various enzymes in the conversion of WSFP to value-added biodiesel and bioactivate hydrolysates. New biotechnologies to discover novel enzymes with robust properties were proposed as well. This paper also presented the bio-utilization strategy of animal fat and protein wastes as alternative nutrient media for microorganism growth activities to yield important industrial enzymes cost-effectively.The improvement of the catalytic performance of sludge-based biochar plays an important role in the catalytic application of biochar. This work aimed to use transition metals and rare earth elements (Fe, Ce, La, Al, Ti) to modify sludge and prepare modified biochar with better catalytic performance through pyrolysis. Through the Fourier transform infrared spectrometer, Raman spectrometer, and X-ray photoelectron spectroscopy, the effects of different metal modifications on the surface morphology, molecular structure, element compositions, and valence of elements of biochar were comprehensively investigated. The results showed that metal elements were successfully modified onto the surface of biochar as metal oxides. Although the highest intensity of persistent free radicals was detected in blank-biochar by electron spin resonance, the intensities of hydroxyl radicals catalyzed by modified biochars in H2O2 system were higher than that catalyzed by blank-biochar, indicating that the catalytic performance of modified biochar was mainly related to the metal oxide loaded and the defect structure on the surface of metal-modified biochar. Furthermore, in the H2O2 system, the degradation efficiencies of tetracycline catalyzed by the biochars within 4 h were 51.7% (blank-biochar), 90.7% (Fe-biochar), 69.0% (Ce-biochar), 59.9% (La-biochar), 58.0% (Al-biochar), 58.0% (Ti-biochar), respectively, suggesting that Fe-biochar not only possessed the best catalytic performance but also shortened the reaction time. This research not only provided the possibility for recycling the waste activated sludge, but also proposed a modification method to improve the catalytic performance of biochar.In this study, we evaluate the long term operation of a bench-scale reactor which simulates a permeable reactive barrier with sulfidic diffusive exchange (SDES PRB) to treat acid mine drainage (AMD), considering that treatment costs are very sensitive to the useful life for passive reactors. Its functioning was evaluated for a much longer period of 591 days compared to previous SDES PRB studies, with two influents simulating moderately and highly acid groundwater contaminated by AMD. First, we fed water amended with 200 mg/L Zn2+ and 3300 mg/L SO42- at pH 4.9; and after, water with 450 mg/L Fe2+, 100 mg/L Zn2+, 10 mg/L Ni2+, 5 mg/L Cu2+ and 3600 mg/L SO42- at pH 2.5. Biologically produced sulfide and alkalinity were enough to remove both metals and acidity (~99%) from the moderately acidic water, while with the highly acidic water, they resulted in significant removal of the metals reaching up to 87% and 79% of total Fe and Zn, respectively. Furthermore, no inhibitory effect was apparent, as the sulfate reduction rates in the two experiments did not vary significantly (averages close to 0.2 mol/m3-d), despite the much higher acidity and metal load in the second case. Hence, the SDES PRB protected the microbial consortium from metal toxicity and acidity in the long-term, and thus is suitable for remediation of AMD contaminated groundwater with high concentrations of metals, extending the operational range of conventional biological PRBs. Furthermore, an economic evaluation shows that SDES costs can be competitive with the costs of conventional chemical precipitation if the enhanced reactivity that SDES technology offers is realized.Soil pollution with Cd has promoted serious concerns for medicinal plant quality. Amending Cd-polluted soils with textile waste biochar (TWB) coated with natural polymers can lower Cd bioavailability in them and reduce associated environmental and human health risks. In this study, we explored the impacts of solely applied TWB, chitosan (CH), their mix (TWB + CH) and TWB coated with CH (TBC) in Cd-polluted soil on Cd distribution in moringa (Moringa oleifera L.) shoots and roots as well as plant-available Cd in soil. Moreover, amendments effects on plant growth, dietary quality, and antioxidative defense responses were also assessed. Results revealed that the addition of TWB, CH, and TWB + CH in Cd-polluted soil reduced Cd distribution in shoots (56%, 66%, and 63%), roots (41%, 48%, and 45%), and plant-available Cd in soil (38%, 52%, and 49%), compared to control. Interestingly, the TBC showed significantly the topmost response for reducing Cd concentrations in shoots, roots, and soil by 73%, 54%, and 58%, re an immense perspective to remediate Cd-polluted soils and prevent human health risks associated with Cd exposure through the diet.
My Website: https://www.selleckchem.com/products/rrx-001.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team