NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

[MR-guided laser interstitial winter therapy in the treatment of mind tumours and also epilepsy].
We demonstrate the effectiveness of our final model Pyramid-Pyramid AttentionClusters (PPAC) on seven real-world video classification datasets.Inferring appropriate information from large datasets has become important. In particular, identifying relationships among variables in these datasets has far-reaching impacts. In this paper, we introduce the uniform information coefficient (UIC), which measures the amount of dependence between two multidimensional variables and is able to detect both linear and non-linear associations. Our proposed UIC is inspired by the maximal information coefficient (MIC) citeMIC2011; however, the MIC was originally designed to measure dependence between two one-dimensional variables. Unlike the MIC calculation that depends on the type of association between two variables, we show that the UIC calculation is less computationally expensive and more robust to the type of association between two variables. The UIC achieves this by replacing the dynamic programming step in the MIC calculation with a simpler technique based on the uniform partitioning of the data grid. This computational efficiency comes at the cost of not maximizing the information coefficient as done by the MIC algorithm. We present theoretical guarantees for the performance of the UIC and a variety of experiments to demonstrate its quality in detecting associations.Existing facial age estimation studies have mostly focused on intra-database protocols that assume training and test images are captured under similar conditions. This is rarely valid in practical applications, where we typically encounter training and test sets with different characteristics. In this paper, we deal with such situations, namely subjective-exclusive cross-database age estimation. We formulate the age estimation problem as the distribution learning framework, where the age labels are encoded as a probability distribution. To improve the cross-database age estimation performance, we propose a new loss function which provides a more robust measure of the difference between ground-truth and predicted distributions. The desirable properties of the proposed loss function are theoretically analysed and compared with the state-of-the-art approaches. In addition, we compile a new balanced large-scale age estimation database. Last, we introduce a novel evaluation protocol, called subject-exclusive cross-database age estimation protocol, which provides meaningful information of a method in terms of the generalisation capability. The experimental results demonstrate that the proposed approach outperforms the state-of-the-art age estimation methods under both intra-database and subject-exclusive cross-database evaluation protocols. In addition, in this paper, we provide a comparative sensitivity analysis of various algorithms to identify trends and issues inherent to their performance.We introduce AdaFrame, a conditional computation framework that adaptively selects relevant frames on a per-input basis for fast video recognition. AdaFrame, which contains a Long Short-Term Memory augmented with a global memory to provide context information, operates as an agent to interact with video sequences aiming to search over time which frames to use. Trained with policy search methods, at each time step, AdaFrame computes a prediction, decides where to observe next, and estimates a utility, i.e., expected future rewards, of viewing more frames in the future. Exploring predicted utilities at testing time, AdaFrame is able to achieve adaptive lookahead inference so as to minimize the overall computational cost without incurring a degradation in accuracy. We conduct extensive experiments on two large-scale video benchmarks, FCVID and ActivityNet. With a vanilla ResNet-101 model, AdaFrame achieves similar performance of using all frames while only requiring, on average, 8.21 and 8.65 frames on FCVID and ActivityNet, respectively. We also demonstrate AdaFrame is compatible with modern 2D and 3D networks for video recognition. Furthermore, we show, among other things, learned frame usage can reflect the difficulty of making prediction decisions both at instance-level within the same class and at class-level among different categories.Computed ultrasound tomography in echo mode (CUTE) is a promising ultrasound (US) based multi-modal technique that allows to image the spatial distribution of speed of sound (SoS) inside tissue using hand-held pulse-echo US. It is based on measuring the phase shift of echoes when detected under varying steering angles. The SoS is then reconstructed using a regularized inversion of a forward model that describes the relation between the SoS and echo phase shift. Promising results were obtained in phantoms when using a Tikhonov-type regularization of the spatial gradient (SG) of SoS. In-vivo, however, clutter and aberration lead to an increased phase noise. In many subjects, this phase noise causes strong artifacts in the SoS image when using the SG regularization. To solve this shortcoming, we propose to use a Bayesian framework for the inverse calculation, which includes a priori statistical properties of the spatial distribution of the SoS to avoid noise-related artifacts in the SoS images. In this study, the a priori model is based on segmenting the B-Mode image. We show in a simulation and phantom study that this approach leads to SoS images that are much more stable against phase noise compared to the SG regularization. In a preliminary in-vivo study, a reproducibility in the range of 10 ms-1 was achieved when imaging the SoS of a volunteer's liver from different scanning locations. These results demonstrate the diagnostic potential of CUTE for example for the staging of fatty liver disease.The slow light sensor techniques have been applied to bio-related detection in the past decades. However, similar testing-systems are too large to carry to a remote area for diagnosis or point-of-care testing. This study demonstrated a fully automatic portable biosensing system based on the microring resonator. An optical-fiber array mounted on a controller based micro-positioning system, which can be interfaced with Matlab to locate a tentative position for light source and waveguide coupling alignment. Chip adapter and microfluidic channel could be packaged as a product such that it is cheap to manufacture and can be disposed of after every test conducted. Ipatasertib price Thus, the platform can be more easily operated via an ordinary user without expertise in photonics. It is designed based on conventional optical communication wavelength range. The C-band SLEDs light source couples in/out the micro-ring sensor to obtain quasi-TE mode by grating coupler techniques. For keeping a stable chemical binding reaction, the cost-effective microfluidic pump was developed to offer a specific flow rate of 20 µL/min by using a servo-motor, an Arduino board, and a motor driver.
My Website: https://www.selleckchem.com/products/gdc-0068.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.