Notes
![]() ![]() Notes - notes.io |
HemoCD1, a 1 1 inclusion complex of 5,10,15,20-tetrakis(4-sulfonatophenyl)porphinatoiron(ii) (FeIITPPS) with a per-O-methylated β-cyclodextrin dimer bearing a pyridine linker (Py3CD), reversibly binds O2 in aqueous solution at neutral pH and ambient temperature. The electronic spectra as well as the functions of hemoCD1 are analogous to those of Mb or its tetramer, hemoglobin (Hb). This is the first example of an artificial Hb/Mb biomimetic model capable of function in aqueous solution. Such a study on hemoCD1 as a Hb/Mb model has expanded research objectives to (1) syntheses of hemoCD1 analogues having distinct characteristics, (2) modeling enzymatic reactions of peroxidase, heme oxygenase, and cytochrome c oxidase in water, (3) development of fully synthetic artificial oxygen carriers (AOCs) utilized in animal blood, and (4) selective binding and removal of toxic small molecules, such as carbon monoxide (CO) and cyanide (CN-) in living organisms.The decoration of Cu2O nanoparticles with guanosine-rich aptamers can significantly enhance their peroxidase activity at neutral pH and endow them with specific recognition capabilities. Both the phosphate backbone and guanine of the aptamers contribute to the enhancement. The excellent enzyme-like properties of this Cu2O-aptamer system make it a versatile platform for the development of neutral pH biosensors.Stille cross-coupling reactions catalysed by an ideal catalyst combining the high activity of homogeneous catalysts and the reusability of heterogeneous catalysts are of great interest for C-C bond formation, which is a widely used reaction in fine chemistry. Despite great effort to increase the utilization ratio of surface metal atoms, the activity of heterogeneous catalysts under mild conditions remains unsatisfactory. Herein, we design a proof-of-concept strategy to trigger the room-temperature activity of heterogeneous Au catalysts by decreasing the electron density at the interface of a rationally designed Schottky heterojunction of Au metals and boron-doped carbons. The electron-deficient Au nanoparticles formed as a result of the rectifying contact with boron-doped carbons facilitate the autocleavage of C-Br bonds for highly efficient C-C coupling reactions of alkylbromides and allylstannanes with a TOF value of 5199 h-1 at room temperature, surpassing that of the state-of-the-art homogeneous catalyst.The protein β2-microglobulin (β2-m) can aggregate in insoluble amyloid fibrils, which deposit in the skeletal muscle system of patients undergoing long-term haemodialysis. The molecular mechanisms of such amyloidogenesis are still not fully understood. A potential, although debated, triggering factor is the cis to trans isomerization of a specific proline (Pro32) in β2-m. Here we investigate this process in the native protein and in the aggregation-prone mutant D76N by means of molecular dynamics and the enhanced sampling method metadynamics. Our simulations, including the estimation of the free energy difference between the cis and trans isomers, are in good agreement with in vitro experiments and highlight the importance of the hydrogen bond and hydrophobic interaction network around the critical Pro32 in stabilizing and de-stabilizing the two isomers.Electron transport properties of polycyclic truxene derivatives have been investigated by the single molecule conductance measurement technique and theoretical study. Molecules with nitrogen and carbonyl substituents at the bridge sites exhibit higher single-molecule conductances by almost one order of magnitude compared with non-substituted analogues. It can be ascribed that the anti-resonance feature produced by destructive quantum interference (DQI) is alleviated and pushed away from the Fermi energy. These findings provide an effective chemical strategy for manipulating the DQI behavior in single molecular devices.We report the synthesis of the lanthanide-(bis)boryloxide complex [DyOB(NArCH)22(THF)4][BPh4] (2Dy, Ar = 2,6-Pri2C6H3), with idealised D4h@Dy(iii) point-group symmetry. Honokiol Complex 2Dy exhibits single-molecule magnetism (SMM), with one of the highest energy barriers (Ueff = 1565(298) K) of any six-coordinate lanthanide-SMM. Complex 2Dy validates electrostatic model predictions, informing the future design of lanthanide-SMMs.A ratiometric fluorescence method based on carboxylated graphitic carbon nitride nanosheets (C-g-C3N4) and Eu3+ (C-g-C3N4-Eu3+) is described for the detection of tetracyclines (TCs), a broad-spectrum antibiotic. C-g-C3N4, which was used as a fluorescence enhancer of Eu3+, was prepared by direct pyrolysis of melamine and post-functionalization. In the presence of TCs, the fluorescence intensity of Eu3+ at 616 nm increased, accompanied by a decrease of fluorescence intensity of C-g-C3N4 at 435 nm. Under the optimal conditions, the ratio of fluorescence intensity at 616 nm to the one at 435 nm (I616/I415) increases linearly in the 10 nM to 40 μM TC concentration range with a detection limit of 7.7 nM (S/N = 3). It has been successfully applied in the detection of TCs in spiked tap water and soil samples with satisfactory recovery (96.6-107.2%) and high precision. Furthermore, a test paper and smartphone can assist in rapidly detecting TCs due to the emission color change from blue to red with the addition of TCs. This shows that the proposed method has great potential for the rapid detection TCs in real samples.Terrylenediimide with electron-withdrawing groups (TDI4SF) was synthesized by the attachment of sulfone substituents on the bay region of terrylenediimide. The electron-withdrawing sulfone groups enhance the electron affinity, reduce the LUMO level to -4.37 eV, and endow TDI with excellent anti-oxidation ability. With sulfone substituents, TDI4SF has a red-shifted emission maximum with a peak at 702 nm and high photoluminescence quantum yield.Considering the remarkable applicability of ionic liquids (ILs) in bio-catalysis involving enzymes, herein, we report new IL based aqueous microemulsions as a catalytic reactor for cytochrome c (Cyt-c). Microemulsions (μEs), comprising water as the polar component, imidazolium (cation) and dioctylsulfosuccinate (AOT) (anion) based biamphiphilic ionic liquid (BAIL) as the surfactant and a hydrophobic ionic liquid (HIL) as the non-polar component have been prepared and characterized. The use of BAIL has promoted the formation of μEs without any co-surfactant, owing to its higher surface activity. The effect of ester- or amide-functionalization of the alkyl chain of the imidazolium cation of BAILs on the phase behavior of μEs has been investigated. The prepared μEs have been characterized via conductivity, dynamic light scattering (DLS), UV-vis absorption and steady-state fluorescence (using external polarity probes) techniques. The prepared μEs have been employed as nano-reactors for exploring the catalytic activity of Cyt-c.
Here's my website: https://www.selleckchem.com/products/Honokiol.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team