Notes
![]() ![]() Notes - notes.io |
Arsenic (As) is a widespread metalloid contaminant, and its internal exposure is demonstrated to cause serious detrimental health problems. Albeit considerable studies are performed to interrogate the molecular mechanisms responsible for As-induced toxicities, the exact mechanisms are not fully understood yet, especially at the epigenetic regulation level. In the present study, it is identified that long non-coding RNA (lncRNA) urothelial cancer associated 1 (UCA1) alleviates As-induced G2/M phase arrest in human liver cells. Intensive mechanistic investigations illustrate that UCA1 interacts with enhancer of zeste homolog 2 (EZH2) and accelerates the latter's protein turnover rate under normal and As-exposure conditions. The phosphorylation of EZH2 at the Thr-487 site by cyclin dependent kinase 1 (CDK1) is responsible for As-induced EZH2 protein degradation, and UCA1 enhances this process through increasing the interaction between CDK1 and EZH2. As a consequence, the cell cycle regulator nuclear factor of activated T cells 2 (NFATc2), a downstream target of EZH2, is upregulated to resist As-blocked cell cycle progress and cytotoxicity. In conclusion, the findings decipher a novel prosurvival signaling pathway underlying As toxicity from the perspective of epigenetic regulation UCA1 facilitates the ubiquitination of EZH2 to upregulate NFATc2 and further antagonizes As-induced cell cycle arrest.Percutaneous coronary intervention for coronary artery disease treatment often results in pathological vascular injury, characterized by P-selectin overexpression. Adipose-derived stem cells (ADSCs) therapeutic efficacy remains elusive due to poor ADSCs targeting and retention in injured vessels. Here, conjugated P-selectin binding peptide (PBP) to polyethylene glycol-conjugated phospholipid derivative (DMPE-PEG) linkers (DMPE-PEG-PBP; DPP) are used to facilitate the modification of PBP onto ADSCs cell surfaces via hydrophobic interactions between DMPE-PEG and the phospholipid bilayer. DPP modification neither has influence on ADSCs proliferation nor apoptosis/paracrine factor gene expression. A total of 5 × 10-6 m DPP-modified ADSCs (DPP-ADSCs) strongly binds to P-selectin-displaying activated platelets and endothelial cells (ECs) in vitro and to wire-injured rat femoral arteries when administered by intra-arterial injection. Targeted binding of ADSCs shields injury sites from platelet and leukocyte adhesion, thereby decreasing inflammation at injury sites. Furthermore, targeted binding of ADSCs recovers injured ECs functionality and reduces platelet-initiated vascular smooth muscle cells (VSMCs) chemotactic migration. Targeted binding of DPP-human ADSCs to balloon-injured human femoral arteries is also demonstrated in ex vivo experiments. Overall, DPP-ADSCs promote vascular repair, inhibit neointimal hyperplasia, increase endothelium functionality, and maintain normal VSMCs alignment, supporting preclinical noninvasive utilization of DPP-ADSCs for vascular injury.Graphene has become an important research focus in many current fields of science including composite manufacturing. Developmental work in the field of graphene-enhanced composites has revealed several functional and structural characteristics that promise great benefits for their use in a broad range of applications. Mdivi-1 purchase There has been much interest in the production of multiscale high-performance, lightweight, yet robust, multifunctional graphene-enhanced fiber-reinforced polymer (gFRP) composites. Although there are many reports that document performance enhancement in materials through the inclusion of graphene nanomaterials into a matrix, or its integration onto the reinforcing fiber component, only a few graphene-based products have actually made the transition to the marketplace. The primary focus of this work concerns the structural gFRPs and discussion on the corresponding manufacturing methodologies for the effective incorporation of graphene into these systems. Another important aspect of this work is to present recent results and highlight the excellent functional and structural properties of the resulting gFRP materials with a view to their future applications. Development of clear standards for the assessment of graphene material properties, improvement of existing materials and scalable manufacturing technologies, and specific regulations concerning human health and environmental safety are key factors to accelerate the successful commercialization of gFRPs.Lead-free chalcogenide SnTe has been demonstrated to be an efficient medium temperature thermoelectric (TE) material. However, high intrinsic Sn vacancies as well as high thermal conductivity devalue its performance. Here, β-Zn4Sb3 is incorporated into the SnTe matrix to regulate the thermoelectric performance of SnTe. Sequential in situ reactions take place between the β-Zn4Sb3 additive and SnTe matrix, and an interesting "core-shell" microstructure (Sb@ZnTe) is obtained; the composition of SnTe matrix is also tuned and thus Sn vacancies are compensated effectively. Benefitting from the synergistic effect of the in situ reactions, an ultralow κlat ≈0.48 W m-1 K-1 at 873 K is obtained and the carrier concentrations and electrical properties are also improved successfully. Finally, a maximum ZT ≈1.32, which increases by ≈220% over the pristine SnTe, is achieved in the SnTe-1.5% β-Zn4Sb3 sample at 873 K. This work provides a new strategy to regulate the TE performance of SnTe and also offers a new insight to other related thermoelectric materials.Macrophages play a central role in orchestrating immune responses to foreign materials, which are often responsible for the failure of implanted medical devices. Material topography is known to influence macrophage attachment and phenotype, providing opportunities for the rational design of "immune-instructive" topographies to modulate macrophage function and thus foreign body responses to biomaterials. However, no generalizable understanding of the inter-relationship between topography and cell response exists. A high throughput screening approach is therefore utilized to investigate the relationship between topography and human monocyte-derived macrophage attachment and phenotype, using a diverse library of 2176 micropatterns generated by an algorithm. This reveals that micropillars 5-10 µm in diameter play a dominant role in driving macrophage attachment compared to the many other topographies screened, an observation that aligns with studies of the interaction of macrophages with particles. Combining the pillar size with the micropillar density is found to be key in modulation of cell phenotype from pro to anti-inflammatory states.
My Website: https://www.selleckchem.com/products/mdivi-1.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team