Notes
![]() ![]() Notes - notes.io |
The melt-blowing process uses high-speed and high-temperature airflow from the die head to draw polymer melt into micron-sized fibers. In this work, to reduce the diameter of the melt-blowing fibers, three new slot dies have been designed based on the common slot die. With computational fluid dynamics technology, the two-dimensional flow fields from these new types of slot dies were numerically calculated. To verify the validity of the calculation, the simulation data was compared with the experimental data. The numerical result shows that the internal flow stabilizers could increase the velocity peak and the pressure peak on the centerline of the flow field and could reduce the reverse velocity, temperature decay, and maximum value of turbulence intensity near the die head. Compared with the common slot die, the slot dies with cuboid bosses could increase the air velocity and temperature on the spinning line in most areas and reduce the air pressure within 1.5 cm below the die. The slot dies with internal flow stabilizers and cuboid bosses have the optimal flow field performance and would be beneficial to the production of thinner fibers.We explore LiNiO2-based cathode materials with two-element substitutions by an ab initio simulation-based materials informatics (AIMI) approach. According to our previous study, a higher cycle performance strongly correlates with less structural change during the charge-discharge cycles; the latter can be used for evaluating the former. However, if we target the full substitution space, full simulations are infeasible even for all binary combinations. To circumvent such an exhaustive search, we rely on Bayesian optimization. Actually, by searching only 4% of all of the combinations, our AIMI approach discovered two promising combinations, Cr-Mg and Cr-Re, whereas each atom itself never improved the performance. We conclude that the synergy never emerges from a common strategy restricted to combinations of "good" elements that individually improve the performance. In addition, we propose a guideline for the binary substitutions by elucidating the mechanism of the crystal structure change.Perovskite oxynitrides have been studied with regard to their visible light-driven photocatalytic activity and novel electronic functionalities. The assessment of the intrinsic physical and/or electrochemical properties of oxynitrides requires the epitaxial growth of single-crystalline films. However, the heteroepitaxy of perovskite oxynitrides has not yet matured compared to the progress realized in work with perovskite oxides. Herein, we report the heteroepitaxial growth of CaTaO2N thin films with (100)pc, (110)pc, and (111)pc crystallographic surface orientations (where the subscript pc denotes a pseudocubic cell) on SrTiO3 substrates using reactive radio frequency magnetron sputtering, along with investigations of crystallinity and surface morphology. Irrespective of surface orientation, stoichiometric CaTaO2N epitaxial thin films were grown coherently on SrTiO3 substrates and showed clear step and terrace surfaces in the case of low values of film thickness of approximately 20 nm. A (110)pc-oriented film was also more highly crystalline than (100)pc- and (111)pc-oriented specimens. This relationship between crystallinity and surface orientation is ascribed to the number of inequivalent in-plane rotational domains, which stems from the symmetry mismatch between the orthorhombic CaTaO2N and cubic SrTiO3. A CaTaO2N thin film grown on a lattice- and symmetry-matched orthorhombic DyScO3 substrate exhibited a significant crystallinity and a clear step and terrace surface even though the film was thick (∼190 nm). These results are expected to assist in developing the heteroepitaxial growth of high-quality perovskite oxynitride thin films.The influence of H2O on SF6 decomposition characteristics under positive DC partial discharge (PD) is significant. To evaluate PD fault severity in DC SF6-insulated equipment using the production characteristics of SF6 decomposition components, the corresponding relationship and mathematical expression between the production of SF6 decomposition components and the H2O content should be identified and achieved. Thus, SF6 decomposition experiments under positive DC PD are performed to reflect the influence of H2O on SF6 decomposition components. Results show that the total discharge quantity and the discharge repetition rate averaged for 1 s decrease slightly when the H2O content increases from 0 to 970 ppmv and then increase when the H2O content increases from 970 to 5120 ppmv. The effective production rates of SO2F2, SOF2, and SO2 increase with the H2O content, whereas that of SOF4 decreases. Finally, the corresponding relationship and mathematical expression between the characteristic ratio (c(SO2F2) + c(SOF4))/(c(SOF2) + c(SO2)) of components and the H2O content have been achieved, which can afford references for PD fault diagnosis in DC SF6 gas-insulated equipment.A rapid, simple procedure is described for synthesizing trialkyl, dialkylaryl, and alkyldiaryl sulfonium salts that features a selective extraction procedure to access analytically pure sulfonium salts. Alkylation of dialkylsulfides, alkylarylsulfides, and diarylsulfides followed by partitioning between acetonitrile and hexanes efficiently separates nonpolar reactants and byproducts, the usual impurities, to afford analytically pure crystalline and noncrystalline sulfonium salts. read more The method is efficient, general, and particularly well suited for the preparation of oily sulfonium salts that are otherwise extremely difficult to purify.Coal as an important fossil energy has been comprehensively studied in terms of its structure, reactivity, and application. However, there are few publications reported about the formation mechanism of coal. In order to explore the molecular mechanism of the formation of the dense medium component (DMC) aggregate, which is extracted from coal, the molecular model of the DMC scaffold (DMC-S) was constructed based on a number of X-ray photoelectron spectroscopy, 13C NMR, and ultimate analysis. Then, DMC-S was further optimized, and the periodic boundary condition was added for molecular mechanics and molecular dynamics simulation. The DMC-S molecule model with a density of 1.05 g/cm3 and a different number of unit cells was obtained after the aforementioned experiments and simulations. When the unit cell contained 12 DMC-S molecules, the absolute value of electrostatic energy significantly increased and the peripheral branch chains in DMC-S interlaced with each other, forming a compact aggregate. The density and macrosize calculated values are all slightly lower than the true relative values because the presence of minerals or small molecules was not included in the model construction.
Read More: https://www.selleckchem.com/products/Adriamycin.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team