NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Polytypism along with superconductivity in the NbS2 program.
Motivated by the dynamics of particles embedded in active gels, both in vitro and inside the cytoskeleton of living cells, we study an active generalization of the classical trap model. We demonstrate that activity leads to dramatic modifications in the diffusion compared to the thermal case the mean square displacement becomes subdiffusive, spreading as a power law in time, when the trap depth distribution is a Gaussian and is slower than any power law when it is drawn from an exponential distribution. The results are derived for a simple, exactly solvable, case of harmonic traps. We then argue that the results are robust for more realistic trap shapes when the activity is strong.Feynman's path integral approach is to sum over all possible spatiotemporal paths to reproduce the quantum wave function and the corresponding time evolution, which has enormous potential to reveal quantum processes in the classical view. However, the complete characterization of the quantum wave function with infinite paths is a formidable challenge, which greatly limits the application potential, especially in the strong-field physics and attosecond science. Instead of brute-force tracking every path one by one, here we propose a deep-learning-performed strong-field Feynman's formulation with a preclassification scheme that can predict directly the final results only with data of initial conditions, so as to attack unsurmountable tasks by existing strong-field methods and explore new physics. Our results build a bridge between deep learning and strong-field physics through Feynman's path integral, which would boost applications of deep learning to study the ultrafast time-dependent dynamics in strong-field physics and attosecond science and shed new light on the quantum-classical correspondence.We experimentally identify coherent spin pumping in the magnon-magnon hybrid modes of yttrium iron garnet/permalloy (YIG/Py) bilayers. By reducing the YIG and Py thicknesses, the strong interfacial exchange coupling leads to large avoided crossings between the uniform mode of Py and the spin wave modes of YIG enabling accurate determination of modification of the linewidths due to the dampinglike torque. We identify additional linewidth suppression and enhancement for the in-phase and out-of-phase hybrid modes, respectively, which can be interpreted as concerted dampinglike torque from spin pumping. Furthermore, varying the Py thickness shows that both the fieldlike and dampinglike couplings vary like 1/sqrt[t_Py], verifying the prediction by the coupled Landau-Lifshitz equations.We present a theory of chemokinetic search agents that regulate directional fluctuations according to distance from a target. A dynamic scattering effect reduces the probability to penetrate regions with high fluctuations and thus reduces search success for agents that respond instantaneously to positional cues. In contrast, agents with internal states that initially suppress chemokinesis can exploit scattering to increase their probability to find the target. Using matched asymptotics between the case of diffusive and ballistic search, we obtain analytic results beyond Fox colored noise approximation.We analyze the dynamics of an initially trapped cloud of interacting quantum particles on a lattice under a linear (Stark) potential. We reveal a dichotomy initially trapped interacting systems possess features typical of both many-body-localized and thermalizing systems. We consider both fermions (t-V model) and bosons (Bose-Hubbard model). For the zero and infinite interaction limits, both systems are integrable we provide analytic solutions in terms of the moments of the initial cloud shape and clarify how the recurrent dynamics (many-body Bloch oscillations) depends on the initial state. Away from the integrable points, we identify and explain the timescale at which Bloch oscillations decohere.Photoelectron spectra obtained with intense pulses generated by free-electron lasers through self-amplified spontaneous emission are intrinsically noisy and vary from shot to shot. TRULI We extract the purified spectrum, corresponding to a Fourier-limited pulse, with the help of a deep neural network. It is trained on a huge number of spectra, which was made possible by an extremely efficient propagation of the Schrödinger equation with synthetic Hamilton matrices and random realizations of fluctuating pulses. We show that the trained network is sufficiently generic such that it can purify atomic or molecular spectra, dominated by resonant two- or three-photon ionization, nonlinear processes which are particularly sensitive to pulse fluctuations. This is possible without training on those systems.We experimentally studied the shear effect on dynamical heterogeneity near glass transition temperature. X-ray photon correlation spectroscopy was utilized to study the dynamics of polyvinyl acetate with tracer particles near its glass transition temperature, to determine the local shear rate from the anisotropic behavior of the time autocorrelation function and to calculate the dynamical heterogeneity using higher-order correlation function. The obtained results show a decrease in the dynamical heterogeneity and faster dynamics with increasing shear rate. This is the first experimental result that proved the predictions of previous molecular dynamics simulations.One of the major open questions in particle physics is the issue of the neutrino mass ordering (NMO). The current data of the two long-baseline experiments NOνA and T2K, interpreted in the standard three-flavor scenario, provide a ∼2.4σ indication in favor of the normal neutrino mass ordering. We show that such an indication is completely washed out if one assumes the existence of neutral-current nonstandard interactions (NSI) of the flavor changing type involving the e-τ flavors. This implies that the claim for a discovery of the NMO will require a careful consideration of the impact of hypothetical NSI.We demonstrate remote entanglement of trapped-ion qubits via a quantum-optical fiber link with fidelity and rate approaching those of local operations. Two ^88Sr^+ qubits are entangled via the polarization degree of freedom of two spontaneously emitted 422 nm photons which are coupled by high-numerical-aperture lenses into single-mode optical fibers and interfere on a beam splitter. A novel geometry allows high-efficiency photon collection while maintaining unit fidelity for ion-photon entanglement. We generate heralded Bell pairs with fidelity 94% at an average rate 182 s^-1 (success probability 2.18×10^-4).
My Website: https://www.selleckchem.com/products/turi.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.