Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Fluorene-9-bisphenol (BHPF) is a bisphenol A substitute, which has been introduced for the production of so-called 'bisphenol A (BPA)-free' plastics. However, it has been reported that BHPF can enter living organisms through using commercial plastic bottles and cause adverse effects. To date, the majority of the toxicologic study of BHPF focused on investigating its doses above the toxicological threshold. learn more Here, we studied the effects of BHPF on development, locomotion, neuron differentiation of the central nervous system (CNS), and the expression of genes in the hypothalamic-pituitary-thyroid (HPT) axis in zebrafish exposed to different doses of BHPF ranging from 1/5 of LD1 to LD50 (300, 500, 750, 1500, 3000, and 4500 nM). As a result, the possible hormetic effects of BHPF on regulating the HPT axis were revealed, in which low-dose BHPF positively affected the HPT axis while this regulation was inhibited as the dose increased. Underlying mechanism investigation suggested that BHPF disrupted myelination through affecting HPT axis including related genes expression and TH levels, thus causing neurotoxic characteristics. Collectively, this study provides the full understanding of the environmental impact of BHPF and its toxicity on living organisms, highlighting a substantial and generalized ongoing dose-response relationship with great implications for the usage and risk assessment of BHPF.An experiment was performed to study the inactivation effect of aerobic composting on heavy metals in maggot, pig and chicken manures. After composting, Cu mainly occurred in the oxidizable (OXI) fraction with a percentage distribution above 54%. Zn and Cd mainly existed in the bioavailable factor (BF), which has strong activity, with percentage distributions greater than 88.3% and 82.7%, respectively. Cr and Pb mainly existed in the stable residual (RES) fraction with a percentage distribution of approximately 50%. The aerobic composting process had a clear inactivation effect on heavy metals. For maggot manure compost in particular, the inactivation effects of Cu, Cr, Zn, Cd, and Pb were very good throughout the composting process, and the inactivation effect of Pb reached 54.42%. In addition, the process of biotransformation by housefly maggots promoted the conversion of fulvic acid (FA) to humic acid (HA) in pig manure, and the final increase in HA/FA after maggot manure composting was the largest among the different types of manure and beneficial to the inactivation of heavy metals. Compounds containing -CH3 and -CH2 groups were reduced, and aromatic structures were enhanced. Moreover, a maggot yield equivalent to 13.2% of the fresh pig manure was achieved during the process of biotransformation. The correlation analysis results showed that moisture content was an important factor affecting the inactivation rates of heavy metals in the three manure composts. Our results highlight that the process of biotransformation by housefly maggots can promote composting maturity and the inactivation of heavy metals, and produce a large amount of insect protein, yielding beneficial ecological and economic benefits.The fabrication of multifunctional materials to remove soluble heavy metal ions and dyes, as well as insoluble oils from waste water is urgently required, yet remains a daunting challenge because of difficulty in controlling their structure and property to satisfy various demands. Herein, for the first time, novel 3D reduced graphene oxide/poly(amino-phosphonic acid) (PAPA) aerogels (rGO/PAPAs) with different PAPA content were developed by solvothermal reduction of the graphene oxide and cross-linking with PAPA chain, and subsequently employed as versatile adsorbent for the removal of complex pollutants such as Cr(III) ion, methylene blue (MB) dye and various kinds of organic solvents from water. Benefiting from the synergistic effect of the reduced graphene oxide (rGO) sheet and PAPA component, as well as its unique 3D structure, the resultant aerogel (rGO/PAPA-2) gained amphiphilic, ultralight, and multifunctional properties. Thus, it showed a fast adsorption rate (within 15 min) and high adsorption capacity (up to 327.1 mg/g) for Cr(III) ion at an optimal pH of 5.5 due to its unique 3D network structure with abundant amino-phosphonic acid functional groups. The uptake of Cr(III) by rGO/PAPA-2 was fitted well with the Langmuir isotherm and pseudo-second-order kinetic model. The adsorption mechanism of Cr(III) onto rGO/PAPA-2 can be attributed to electrostatic attraction and surface complexation with APA groups. In addition, the rGO/PAPA-2 displayed an excellent adsorption performance for MB (694.5 mg/g) and several organic solvents (83.2 to 254.3 g/g). Moreover, the rGO/PAPA-2 exhibited a good regeneration (around 99%) and satisfactory recovery abilities for the tested adsorbates. Notably, PAPA chains can be easily prepared from waste acrylic fibers, making it become a cost effective but versatile candidate to prepare new material. Therefore, this work provides a new design strategy to fabricate the rGO/PAPA-2 aerogel with great prospect for sophisticated industrial wastewater cleanup.Biodiversity drives ecosystem functioning across grassland ecosystems. However, few studies have examined how grazing intensity affects ecosystem multifunctionality (EMF) via its effects on plant diversity and soil microbial diversity in dry grasslands. We conducted a 12-year experiment manipulating sheep grazing intensity in a desert steppe of northern China. Through measuring plant species diversity, soil microbial diversity (bacteria diversity) and multiple ecosystem functions (i.e., aboveground net primary productivity, belowground biomass of plant community, temporal stability of ANPP, soil organic matter, moisture, available nitrogen and phosphorus, ecosystem respiration and gross ecosystem productivity), we aimed to understand how grazing intensity affected EMF via changing the diversity of plants and microbes. Our results showed that increasing grazing intensity significantly reduced EMF and most individual ecosystem functions, as well as the diversity of plants and microbes, while EMF and most individual functions were positively related to plant diversity and soil microbial diversity under all grazing intensities.
Here's my website: https://www.selleckchem.com/products/ag-1478-tyrphostin-ag-1478.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team