Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Extremely high-dose-rate irradiation, referred to as FLASH, has been shown to be less damaging to normal tissues than the same dose administrated at conventional dose rates. These results, typically seen at dose rates exceeding 40 Gy/s (or 2,400 Gy/min), have been widely reported in studies utilizing photon or electron radiation as well as in some proton radiation studies. Here, we report the development of a proton irradiation platform in a clinical proton facility and the dosimetry methods developed. The target is placed in the entry plateau region of a proton beam with a specifically designed double-scattering system. The energy after the double-scattering system is 227.5 MeV for protons that pass through only the first scatterer, and 225.5 MeV for those that also pass through the second scatterer. The double-scattering system was optimized to deliver a homogeneous dose distribution to a field size as large as possible while keeping the dose rate >100 Gy/s and not exceeding a cyclotron current of 300 nA. We were able to obtain a collimated pencil beam (1.6 × 1.2 cm2 ellipse) at a dose rate of ∼120 Gy/s. This beam was used for dose-response studies of partial abdominal irradiation of mice. First results indicate a potential tissue-sparing effect of FLASH.Ralstonia solanacearum injects type III effectors into host cells to cause bacterial wilt in Solanaceae plants. To identify R. solanacearum effectors that suppress effector-triggered immunity (ETI) in plants, we evaluated R. solanacearum RS1000 effectors for their ability to suppress a hypersensitive response (HR) induced by the avirulence (Avr) effector RipAA in Nicotiana benthamiana. Out of the 11 effectors tested, 4 suppressed RipAA-triggered HR cell death. Among them, RipAC contains tandem repeats of the leucine-rich repeat (LRR) motif, which serves as the structural scaffold for a protein-protein interaction. We found that the LRR domain of RipAC was indispensable for the suppression of HR cell death during the recognition of RipAA and another Avr effector RipP1. By yeast two-hybrid screening, we identified N. benthamiana SGT1, an adaptor protein that forms a molecular chaperone complex with RAR1, as a host factor of the RipAC target. RipAC interacted with NbSGT1 in yeast and plant cells. Upon the formation of the molecular chaperone complex, the presence of RipAC markedly inhibits the interaction between NbSGT1 and NbRAR1. The RipAA- and RipP1-triggered HR cell deaths were not observed in NbSGT1-silenced plants. The introduction of RipAC was complementary to the reduced growth of the R. KIF18A-IN-6 supplier solanacearum mutant strain in N. benthamiana. These findings indicate that R. solanacearum uses RipAC to subvert the NbSGT1-mediated formation of the molecular chaperone complex and suppress ETI responses during the recognition of Avr effectors.
Single-item athlete self-report measures consist of a single question to assess a dimension of wellbeing. These methods are recommended and frequently used for athlete monitoring, yet their uniformity has not been well assessed, and we have a limited understanding of their relationship with measures of training load.
To investigate the applications and designs of single-item self-report measures used in monitoring team-sport athletes and present the relationship between these measures and measures of training load.
PubMed, Scopus, and SPORTDiscus were searched between inception and March 2019.
Articles were included if they concerned adult athletes from field- or court-sport domains, if athlete well-being was measured using a single-item self-report, and if the relationship with a measure of modifiable training load was investigated over at least 7 days.
Data related to participant characteristics, self-report measures, training load measures, and statistical analysis and outcomes were extracted by clinically meaningful outcomes. As such, further study is required to inform practitioners on the appropriate objective application of data from single-item self-report measures.
The implications of this review should be considered by users in the application and clinical utility of single-item self-report measures in athlete monitoring. Great emphasis has been placed on examining the relationship between subjective and objective measures of training load. Although the relationship is still unclear, such an association may not be expected or useful. Researchers should consider the measurement properties of single-item self-report measures and seek to establish their relationship with clinically meaningful outcomes. As such, further study is required to inform practitioners on the appropriate objective application of data from single-item self-report measures.Nutritional interventions are not commonly a standard of care in rehabilitation interventions. A nutritional approach has the potential to be a low-cost, high-volume strategy that complements the existing standard of care. In this commentary, our aim is to provide an evidence-based, practical guide for athletes with injuries treated surgically or conservatively, along with healing and rehabilitation considerations. Injuries are a normal and expected part of exercise participation. Regardless of severity, an injury typically results in the athlete's short- or long-term removal from participation. Nutritional interventions may augment the recovery process and support optimal healing; therefore, incorporating nutritional strategies is important at each stage of the healing process. Preoperative nutrition and nutritional demands during rehabilitation are key factors to consider. The physiological response to wounds, immobilization, and traumatic brain injuries may be improved by optimizing macronutrient compositiient to a registered dietitian if warranted. Because nutrition plays an essential role in injury recovery and rehabilitation, nutritional interventions should become a component of standard-of-care practice after injury. In this article, we address best practices for implementing nutritional strategies among patients with athletic injuries.
Young athletes are encouraged to participate in high-intensity sport programs. However, most research on the association between training volume (TV) and injury has been performed on adult or professional athletes.
To evaluate the association between acute and chronic TV (hours/week) and reported injury (yes/no) and evaluate the relationship between acute chronic TV and injury while controlling for sex, age, and prior injury in young athletes.
Cohort study.
Online surveys.
Middle school-aged adolescents.
We conducted a baseline survey at the start of the 2017-2018 academic year. The baseline survey solicited information regarding demographics, injury history, and primary sport. Subsequent surveys were delivered electronically at the start of each week. Information obtained with the weekly survey included weekly TV and injuries sustained the previous week. Injuries were reported and classified (eg, acute or gradual onset) by the participants. Weekly TV was aggregated as rolling averages over the prior 2, 3, and 4 weeks.
Here's my website: https://www.selleckchem.com/products/vls-1488-kif18a-in-6.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team