Notes
![]() ![]() Notes - notes.io |
It was found that the RMSE of prediction was only 2.109 with a promising R2 = 0.97.Rapid and efficient biological sample preparation and pretreatment are crucial for highly sensitive, reliable and reproducible molecular detection of infectious diseases. Herein, we report a self-powered, integrated sample concentrator (SPISC) for rapid plasma separation, pathogen lysis, nucleic acid trapping and enrichment at the point of care. The proposed sample concentrator uses a combination of gravitational sedimentation of blood cells and capillary force for rapid, self-powered plasma separation. The pathogens (e.g., HIV virus) in separated plasma were directly lysed and pathogen nucleic acid was enriched by an integrated, flow-through FTA® membrane in the concentrator, enabling highly efficient nucleic acid preparation. The FTA® membrane of the SPISC is easy to store and transport at room temperature without need for uninterrupted cold chain, which is crucial for point of care sampling in resource-limited settings. The platform has been successfully applied to detect HIV virus in blood samples. Our experiments show that the sample concentrator can achieve a plasma separation efficiency as high as 95% and a detection sensitivity as low as 10 copies per 200 μL blood (∼100 copies per mL plasma) with variability less than 7%. The sample concentrator described is fully compatible with downstream nucleic acid detection and has great potential for early diagnostics, monitoring and management of infectious diseases at the point of care.Molecularly imprinted polymers (MIPs) have numerous applications in the sensing field, the detection/recognition of virus, the structure determination of proteins, drug delivery, artificial/biomimetic antibodies, drug discovery, and cell culturing. There are lots of conventional methods routinely deployed for the analysis/detection of viral infections and pathogenic viruses, namely enzyme immunoassays, immunofluorescence microscopy, polymerase chain reaction (PCR) and virus isolation. However, they typically suffer from higher costs, low selectivity/specificity, false negative/positive results, time consuming procedures, and inherent labor intensiveness. MIPs offer promising potential for viral recognition/detection with high target selectivity, sensitivity, robustness, reusability, and reproducible fabrication. In terms of virus detection, selectivity and sensitivity are critical parameters determined by the template; additionally, the analytical detection and evaluation of viruses must have considerably low detection limits. The virus-imprinted polymer-based innovative strategies with enough specificity, convenience, validity, and reusability features for the detection/recognition of a wide variety of viruses, can provide attractive capabilities for reliable screening with minimal false negative/positive results that is so crucial for the prevention and control of epidemic and pandemic viral infections. However, in the process of imprinting viruses, critical factors such as size of the target, solubility, fragility, and compositional complexity should be analytically considered and systematically evaluated. In this review, recent advancements regarding the applications of MIPs and pertinent virus imprinting techniques for the detection of viruses, as well as their current significant challenges and future perspectives, are deliberated.[This corrects the article DOI 10.1039/D0SC02646H.].[This corrects the article DOI 10.3233/BLC-200332.].[This corrects the article DOI 10.3233/BLC-200013.].[This corrects the article DOI 10.1007/s40614-020-00271-x.].The study of the DNA damage response (DDR) is a complex and essential field, which has only become more important due to the use of DDR-targeting drugs for cancer treatment. These targets are poly(ADP-ribose) polymerases (PARPs), which initiate various forms of DNA repair. Inhibiting these enzymes using PARP inhibitors (PARPi) achieves synthetic lethality by conferring a therapeutic vulnerability in homologous recombination (HR)-deficient cells due to mutations in breast cancer type 1 (BRCA1), BRCA2, or partner and localizer of BRCA2 (PALB2). Cells treated with PARPi accumulate DNA double-strand breaks (DSBs). These breaks are processed by the DNA end resection machinery, leading to the formation of single-stranded (ss) DNA and subsequent DNA repair. In a BRCA1-deficient context, reinvigorating DNA resection through mutations in DNA resection inhibitors, such as 53BP1 and DYNLL1, causes PARPi resistance. Therefore, being able to monitor DNA resection in cellulo is critical for a clearer understanding of the DNA repair pathways and the development of new strategies to overcome PARPi resistance. Immunofluorescence (IF)-based techniques allow for monitoring of global DNA resection after DNA damage. This strategy requires long-pulse genomic DNA labeling with 5-bromo-2'-deoxyuridine (BrdU). Following DNA damage and DNA end resection, the resulting single-stranded DNA is specifically detected by an anti-BrdU antibody under native conditions. Moreover, DNA resection can also be studied using cell cycle markers to differentiate between various phases of the cell cycle. check details Cells in the S/G2 phase allow the study of end resection within HR, whereas G1 cells can be used to study non-homologous end joining (NHEJ). A detailed protocol for this IF method coupled to cell cycle discrimination is described in this paper.The most recent advance in the treatment of osteosarcoma (OS) occurred in the 1980s when multi-agent chemotherapy was shown to improve overall survival compared to surgery alone. To address this problem, the aim of the study is to refine a lesser-known model of OS in rats with a comprehensive histologic, imaging, biologic, implantation, and amputation surgical approach that prolongs survival. We used an immunocompetent, outbred Sprague-Dawley (SD), syngeneic rat model with implanted UMR106 OS cell line (originating from a SD rat) with orthotopic tibial tumor implants into 3-week-old male and female rats to model pediatric OS. We found that rats develop reproducible primary and metastatic pulmonary tumors, and that limb amputations at 3 weeks post implantation significantly reduce the incidence of pulmonary metastasis and prevent unexpected deaths. Histologically, the primary and metastatic OSs in rats were very similar to human OS. Using immunohistochemistry methods, the study shows that rat OS are infiltrated with macrophages and T cells.
Website: https://www.selleckchem.com/products/tr-107.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team