Notes
![]() ![]() Notes - notes.io |
An efficient anharmonic vibrational method is developed exploiting the locality of molecular vibration. Vibrational coordinates localized to a group of atoms are employed to divide the potential energy surface (PES) of a system into intra- and inter-group contributions. Then, the vibrational Schrödinger equation is solved based on a PES, in which the inter-group coupling is truncated at the harmonic level while accounting for the intra-group anharmonicity. The method is applied to a pentagonal hydrogen bond network (HBN) composed of internal water molecules and charged residues in a membrane protein, bacteriorhodopsin. The PES is calculated by the quantum mechanics/molecular mechanics (QM/MM) calculation at the level of B3LYP-D3/aug-cc-pVDZ. The infrared (IR) spectrum is computed using a set of coordinates localized to each water molecule and amino acid residue by second-order vibrational quasi-degenerate perturbation theory (VQDPT2). Benchmark calculations show that the proposed method yields the N-D/O-D stretching frequencies with an error of 7 cm-1 at the cost reduced by more than five times. In contrast, the harmonic approximation results in a severe error of 150 cm-1. Furthermore, the size of QM regions is carefully assessed to find that the QM regions should include not only the pentagonal HBN itself but also its HB partners. Selleck AZD7545 VQDPT2 calculations starting from transient structures obtained by molecular dynamics simulations have shown that the structural sampling has a significant impact on the calculated IR spectrum. The incorporation of anharmonicity, sufficiently large QM regions, and structural samplings are of essential importance to reproduce the experimental IR spectrum. The computational spectrum paves the way for decoding the IR signal of strong HBNs and helps elucidate their functional roles in biomolecules.Pharmacotherapy of vascular anomalies has limited efficacy and potentially limiting toxicity. Targeted nanoparticle (NP) drug delivery systems have the potential to accumulate within tissues where the vasculature is impaired, potentially leading to high drug levels (increased efficacy) in the diseased tissue and less in off-target sites (less toxicity). Here, we investigate whether NPs can be used to enhance drug delivery to bioengineered human vascular networks (hVNs) that are a model of human vascular anomalies. We demonstrate that intravenously injected phototargeted NPs enhanced accumulation of NPs and the drug within hVNs. With phototargeting we demonstrate 17 times more NP accumulation within hVNs than was detected in hVNs without phototargeting. With phototargeting there was 10-fold more NP accumulation within hVNs than in any other organ. Phototargeting resulted in a 6-fold increase in drug accumulation (doxorubicin) within hVNs in comparison to animals injected with the free drug. Nanoparticulate approaches have the potential to markedly improve drug delivery to vascular anomalies.In the conventional picture, the temperature of a liquid bath in the quiescent state is uniform down to thermal fluctuation length scales. Here we examine the impact of a low-frequency shear mechanical field (hertz) on the thermal equilibrium of polypropylene glycol and liquid water away from any phase transition confined between high-energy surfaces. We show the emergence of both cooling and heating shear waves of several tens of micrometers widths varying synchronously with the applied shear strain wave. The thermal wave is stable at low strain amplitude and low frequency while thermal harmonics develop by increasing the frequency or the strain amplitude. The liquid layer behaves as a dynamic thermoelastic medium challenging the extension of the fluctuation-dissipation theorem to nonequilibrium fluids. This view is in agreement with recent theoretical models predicting that liquids support shear elastic waves up to a finite propagation length scale of the order the thermal wave.Combination of the merit of inorganic nanocrystals (NCs) and solution-processed conjugated polymer is a convenient strategy to obtain stable and efficient electroluminescent white-light-emitting diodes (el-WLEDs). In this work, an el-WLED was fabricated on the basis of Cd-free Cu-In-Zn-S (CIZS)/ZnS NCs blending with polyfluorene derivative poly[4-(octyloxy)-9,9-diphenylfluoren-2,7-diyl]-co-[5-(octyloxy)-9,9-diphenylfluoren-2,7-diyl] (PODPF), which exhibited a stable white light emission with a color rendering index value of 85. Meanwhile, it had a stable spectrum under high voltage due to the extremely weak energy transfer between PODPF and CIZS/ZnS NCs. To further improve the device performance, PC9O4 was used to replace PODPF, which presented better solubility and smoother film-forming properties. Thus, the maximum external quantum efficiency (EQE) of the optimized el-WLED was increased by 221% while maintaining a stable spectrum under high voltage. This work may provide a great foundation on color mixing cadmium-free el-WLEDs.Cancer cells reprogram their metabolism to survive and grow. Small-molecule inhibitors targeting cancer are useful for studying its metabolic pathways and functions and for developing anticancer drugs. Here, we discovered that glutipyran and its derivatives inhibit glycolytic activity and cell growth in human pancreatic cancer cells. According to proteomic profiling of glutipyran-treated cells using our ChemProteoBase, glutipyran was clustered within the group of endoplasmic reticulum (ER) stress inducers that included glycolysis inhibitors. Glutipyran inhibited glucose uptake and suppressed the growth of various cancer cells, including A431 cells that express glucose transporter class I (GLUT1) and DLD-1 GLUT1 knockout cells. When cotreated with the mitochondrial respiration inhibitor metformin, glutipyran exhibited a synergistic antiproliferative effect. Metabolome analysis revealed that glutipyran markedly decreased most metabolites of the glycolytic pathway and the pentose phosphate pathway. Glutipyran significantly suppressed tumor growth in a xenograft mouse model of pancreatic cancer. These results suggest that glutipyran acts as a broad-spectrum GLUT inhibitor and reduces cancer cell growth.
My Website: https://www.selleckchem.com/products/azd7545.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team